Skip to main content

Groundbreaking new laser technology could be used to control lightning

This is not an April Fools Day joke. We promise.

Optical scientists at the University of Arizona and University of Central Florida have developed a new type of laser technology capable of sending high-intensity beams through the atmosphere much farther than what was previously possible. The research, which was recently published in the journal Nature Photonics, is still in the laboratory phase. However, with further development, this technology could be used to divert lightning bolts away from buildings in the future.

Recommended Videos

Here’s how that works. When the laser is fired, the high intensity beam leaves a channel of plasma (ionized molecules stripped of their electrons) in its wake. This column of plasma, in theory, could provide lightning bolts with a path of least resistance to the surface of the Earth, and thereby encourage them to strike in a specific place.

Up until recently, sending a laser beam high enough into the atmosphere to make this possible was difficult because, despite their intensity, singular high-intensity beams tend to laser beamdisappear over distances greater than a few feet. This is due to diffraction –the effect of light being bent and diffused as it passes through the air, which ultimately causes the beam to lose its focus as it travels further.

The researchers were able to overcome this phenomenon and achieve considerably greater distances with a clever trick: embedding the primary high-intensity beam inside of a second beam of lower intensity. As the inner beam travels through the air, the second beam (called a dress beam) refuels it, and provides it with enough energy to travel much greater distances than what was previously achievable. In lab tests, scientists were able to extend the range of the lasers from 10 inches to around seven feet — nearly a tenfold increase. Simulations have shown that by scaling up the technology to atmospheric proportions, the range of laser filaments could reach as high as 165 feet, thereby making lightning control a viable possibility.

The development of the new laser technology was supported by a five-year, 7.5 million-dollar US Department of Defense grant awarded to a group of researchers led by Jerome Maloney, a mathematics and optical sciences professor at the University of Arizona. Maloney is heading up the multidisciplinary, multi-institution research effort to investigate ultra-short laser pulses, with a focus on how they affect the atmosphere and ways to improve their propagation over large distances.

We’re sure the military is thrilled by the prospect of raining down lighting on its enemies. Find out more here.

[via Phys.org]

Looking for more crazy, cutting-edge, and borderline-unbelievable news? Check out this piece on brain implants that help paralyzed people walk again, or this one about a two-way dolpin-to-English translator.

Drew Prindle
Former Digital Trends Contributor
Drew Prindle is an award-winning writer, editor, and storyteller who currently serves as Senior Features Editor for Digital…
Star Wars legend Ian McDiarmid gets questions about the Emperor’s sex life
Ian McDiarmid as the Emperor in Star Wars: The Rise of Skywalker.

This weekend, the Star Wars: Revenge of the Sith 20th anniversary re-release had a much stronger performance than expected with $25 million and a second-place finish behind Sinners. Revenge of the Sith was the culmination of plans by Chancellor Palpatine (Ian McDiarmid) that led to the fall of the Jedi and his own ascension to emperor. Because McDiarmid's Emperor died in his first appearance -- 1983's Return of the Jedi -- Revenge of the Sith was supposed to be his live-action swan song. However, Palpatine's return in Star Wars: Episode IX -- The Rise of Skywalker left McDiarmid being asked questions about his character's comeback, particularly about his sex life and how he could have a granddaughter.

While speaking with Variety, McDiarmid noted that fans have asked him "slightly embarrassing questions" about Palpatine including "'Does this evil monster ever have sex?'"

Read more
Waymo and Toyota explore personally owned self-driving cars
Front three quarter view of the 2023 Toyota bZ4X.

Waymo and Toyota have announced they’re exploring a strategic collaboration—and one of the most exciting possibilities on the table is bringing fully-automated driving technology to personally owned vehicles.
Alphabet-owned Waymo has made its name with its robotaxi service, the only one currently operating in the U.S. Its vehicles, including Jaguars and Hyundai Ioniq 5s, have logged tens of millions of autonomous miles on the streets of San Francisco, Los Angeles, Phoenix, and Austin.
But shifting to personally owned self-driving cars is a much more complex challenge.
While safety regulations are expected to loosen under the Trump administration, the National Highway Traffic Safety Administration (NHTSA) has so far taken a cautious approach to the deployment of fully autonomous vehicles. General Motors-backed Cruise robotaxi was forced to suspend operations in 2023 following a fatal collision.
While the partnership with Toyota is still in the early stages, Waymo says it will initially study how to merge its autonomous systems with the Japanese automaker’s consumer vehicle platforms.
In a recent call with analysts, Alphabet CEO Sundar Pichai signaled that Waymo is seriously considering expanding beyond ride-hailing fleets and into personal ownership. While nothing is confirmed, the partnership with Toyota adds credibility—and manufacturing muscle—to that vision.
Toyota brings decades of safety innovation to the table, including its widely adopted Toyota Safety Sense technology. Through its software division, Woven by Toyota, the company is also pushing into next-generation vehicle platforms. With Waymo, Toyota is now also looking at how automation can evolve beyond assisted driving and into full autonomy for individual drivers.
This move also turns up the heat on Tesla, which has long promised fully self-driving vehicles for consumers. While Tesla continues to refine its Full Self-Driving (FSD) software, it remains supervised and hasn’t yet delivered on full autonomy. CEO Elon Musk is promising to launch some of its first robotaxis in Austin in June.
When it comes to self-driving cars, Waymo and Tesla are taking very different roads. Tesla aims to deliver affordability and scale with its camera, AI-based software. Waymo, by contrast, uses a more expensive technology relying on pre-mapped roads, sensors, cameras, radar and lidar (a laser-light radar), that regulators have been quicker to trust.

Read more
Uber partners with May Mobility to bring thousands of autonomous vehicles to U.S. streets
uber may mobility av rides partnership

The self-driving race is shifting into high gear, and Uber just added more horsepower. In a new multi-year partnership, Uber and autonomous vehicle (AV) company May Mobility will begin rolling out driverless rides in Arlington, Texas by the end of 2025—with thousands more vehicles planned across the U.S. in the coming years.
Uber has already taken serious steps towards making autonomous ride-hailing a mainstream option. The company already works with Waymo, whose robotaxis are live in multiple cities, and now it’s welcoming May Mobility’s hybrid-electric Toyota Sienna vans to its platform. The vehicles will launch with safety drivers at first but are expected to go fully autonomous as deployments mature.
May Mobility isn’t new to this game. Backed by Toyota, BMW, and other major players, it’s been running AV services in geofenced areas since 2021. Its AI-powered Multi-Policy Decision Making (MPDM) tech allows it to react quickly and safely to unpredictable real-world conditions—something that’s helped it earn trust in city partnerships across the U.S. and Japan.
This expansion into ride-hailing is part of a broader industry trend. Waymo, widely seen as the current AV frontrunner, continues scaling its service in cities like Phoenix and Austin. Tesla, meanwhile, is preparing to launch its first robotaxis in Austin this June, with a small fleet of Model Ys powered by its camera-based Full Self-Driving (FSD) system. While Tesla aims for affordability and scale, Waymo and May are focused on safety-first deployments using sensor-rich systems, including lidar—a tech stack regulators have so far favored.
Beyond ride-hailing, the idea of personally owned self-driving cars is also gaining traction. Waymo and Toyota recently announced they’re exploring how to bring full autonomy to private vehicles, a move that could eventually bring robotaxi tech right into your garage.
With big names like Uber, Tesla, Waymo, and now May Mobility in the mix, the ride-hailing industry is evolving fast—and the road ahead looks increasingly driver-optional.

Read more