Skip to main content

Hubble captures a dusty nursery where new baby stars are being born

Image from the NASA/ESA Hubble Space Telescope features AFGL 5180, a beautiful stellar nursery located in the constellation of Gemini.
Nestled among the vast clouds of star-forming regions like this one lie potential clues about the formation of our own solar system. This image from the NASA/ESA Hubble Space Telescope features AFGL 5180, a beautiful stellar nursery located in the constellation of Gemini (the Twins). ESA/Hubble & NASA, J. C. Tan (Chalmers University & University of Virginia), R. Fedriani (Chalmers University); Acknowledgment: Judy Schmidt

Although it recently had a scare with some faulty computer hardware, the Hubble Space Telescope is now back up and running with its normal science operations. That means we can look forward to many more breathtaking images of space captured by this venerable telescope, like the one above recently shared by NASA.

This image shows the nebula AFGL 5180, a cloud of dust located in the constellation of Gemini (the Twins), which acts as the birthplace for new stars. A huge star is being born in the center of this image, sending out jets that disrupt the dust and gas above and below it.

Stars are born when clouds of dust like this one begin to form clumps. As more dust and gas are attracted to the clumps due to gravity, they begin to grow. Eventually, the clumps grow so large and dense that they collapse into stars. From start to finish, for a star to develop from a cloud of dust to a shining beacon, like our sun, the process takes around one million years.

Regions of relatively thick dust are essential for star formation, like this nebula. However, the dust that powers the birth of stars can be a problem for astronomers here on Earth. “Stars are born in dusty environments, and although this dust makes for spectacular images, it can prevent astronomers from seeing stars embedded in it,” Hubble scientists write. “Hubble’s Wide Field Camera 3 (WFC3) instrument is designed to capture detailed images in both visible and infrared light, meaning that the young stars hidden in vast star-forming regions like AFGL 5180 can be seen much more clearly.”

Using infrared allows astronomers to peer through the dusty veil and see what lies beneath. A similar approach has been used to peer through the clouds of Jupiter in our solar system or to see the movement of gas at the center of our galaxy.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spots a massive star forming amid clouds of dust and gas
This image from the NASA/ESA Hubble Space Telescope is a relatively close star-forming region known as IRAS 16562-3959.

A stunning new image from the Hubble Space Telescope shows the birth of a new, massive star at around 30 times the mass of our sun. Nestled with a nearby star-forming region called IRAS 16562-3959, the baby star is located within our galaxy and around 5,900 light-years from Earth.

You can see the sparkle of bright stars throughout the image, with the star-forming region visible as the orange-colored clouds of dust and gas stretching diagonally across the frame. These clouds are where dust and gas clump together to form knots, gradually attracting more dust and gas, growing over time to become protostars.

Read more
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more