Skip to main content

A lucky dip into Jupiter’s clouds captures stunning image of the planet

Astronomers have captured some of the highest ever resolution infrared images of Jupiter taken from the Earth, using the Gemini North telescope in Hawaii.

“The Gemini data were critical because they allowed us to probe deeply into Jupiter’s clouds on a regular schedule,” explained Michael Wong of University of California Berkeley, leader of the research team, in a statement. “We used a very powerful technique called lucky imaging.”

Lucky imaging works by capturing a large number of very short exposure images from an Earth-based telescope. Most of these images will be blurry due to the movements in Earth’s atmosphere. But the occasional “lucky” image will be taken at a moment when the atmosphere is still, and will capture its target in sharp detail. The lucky images can then be combined into one mosaic. This technique allowed the researchers to capture the sharpest infrared image of Jupiter yet seen.

image showing the entire disk of Jupiter in infrared light
This image showing the entire disk of Jupiter in infrared light was compiled from a mosaic of nine separate pointings observed by the international Gemini Observatory. International Gemini Observatory/NOIRLab/NSF/AURA, M.H. Wong (UC Berkeley) and team Acknowledgments: Mahdi Zamani

By looking in the infrared wavelength instead of the visible light wavelength, the astronomers were able to look through the thin haze in Jupiter’s atmosphere which infrared wavelengths can pass through. But the thicker clouds in the upper atmosphere block the infrared wanes, leading to this effect where the deeper, warmer layers of atmosphere glow through gaps in the cloud cover.

One interesting finding from this study is the peculiar glow seen in the Great Red Spot, a storm that has been raging for hundreds of years and is so large it is visible from space. The glow indicates that some of the upper clouds are parting to offer a view of the deeper layers.

“Similar features have been seen in the Great Red Spot before,” team member Glenn Orton of NASA’s Jet Propulsion Lab explained, “but visible-light observation couldn’t distinguish between darker cloud material, and thinner cloud cover over Jupiter’s warm interior, so their nature remained a mystery.”

This new data suggests that the glow of this section in the infrared wavelength indicates a gap in the clouds which is allowing Jupiter’s internal heat to shine through and to be detectable from outside of the planet’s atmosphere.

The findings are published in The Astrophysical Journal Supplement Series.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures Jupiter’s moons and rings in infrared
Jupiter, center, and its moon Europa, left, are seen through the James Webb Space Telescope’s NIRCam instrument 2.12 micron filter.

The James Webb Space Telescope has made headlines this week with its ability to look deeper into the universe than ever before, but it will also be used to look at some targets closer to home. As well as distant galaxies and far-off exoplanets, Webb will also be used to investigate objects right here in our solar system -- and one of the first research projects it will be used for will study Jupiter and its rings and moons.

Now, NASA and its partners, the European Space Agency and the Canadian Space Agency, have demonstrated how capable Webb is of studying Jupiter by releasing the first images it has taken of targets in our solar system. The images show the iconic stripes of Jupiter as seen in the infrared, and also show up some of the moons of Jupiter like Europa which is clearly visible below:

Read more
You can help analyze Juno images of Jupiter’s clouds
An image of the 22nd orbit of the Juno spacecraft around Jupiter shows the region close to the north pole of the planet. There is a huge diversity in the colors and shapes of these vortices (hurricane-like storms). Scientists need to create a catalog of these storms in order to understand how they form.

Some of the most stunning images of Jupiter have been captured by the Juno probe, which has been in orbit around the planet since 2016. And many of these images have investigated Jupiter's strange atmosphere, including peering through the atmosphere's many layers. Now, a citizen scientist project is inviting members of the public to help with this work, by identifying atmospheric features in Juno data.

The project from researchers at the University of Minnesota and NASA is called Jovian Vortex Hunter and aims to categorize the different types of clouds seen at Jupiter, in terms of their shapes and sizes. It takes data from Juno's JunoCam imager and asks volunteers to look for specific features called atmospheric vortices. These clouds have a particular round or elliptical shape, similar to how a hurricane appears when seen from above.

Read more
See Jupiter’s moons Io and Europa in this stunning Juno image
NASA’s Juno mission captured this view of Jupiter’s southern hemisphere during the spacecraft’s 39th close flyby of the planet on Jan. 12, 2022.

NASA has released a stunning image of the planet Jupiter, captured by its Juno mission. This particular image was created by a member of the public, Andrea Luck, who used the publicly available raw data from the JunoCam instrument to process the image.

NASA’s Juno mission captured this view of Jupiter’s southern hemisphere during the spacecraft’s 39th close flyby of the planet on Jan. 12, 2022. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by AndreaLuck

Read more