Skip to main content

James Webb captures stunning image of star formation in nearby galaxy

A stunning new image from the James Webb Space Telescope shows a stellar nursery called NGC 346, which is not only beautiful but is also leading astronomers to rethink their theories about how stars and planets could have formed in the early universe.

The star cluster NGC 346 is a busy region full of star formation and is located in the nearby Small Magellanic Cloud, a satellite galaxy of the Milky Way. The composition of the Small Magellanic Cloud is rather different from that of the Milky Way, as it has fewer heavier elements. As dust is typically composed of these heavier elements, astronomers thought that there would be less dust in the Small Magellanic Cloud — but that’s not what Webb found.

NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light years away.
NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light years away. Webb reveals the presence of many more building blocks than previously expected, not only for stars, but also planets, in the form of clouds packed with dust and hydrogen. SCIENCE: NASA, ESA, CSA, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) IMAGE PROCESSING: Alyssa Pagan (STScI), Nolan Habel (USRA), Laura Lenkić (USRA), Laurie E. U. Chu (NASA Ames)

Instead, Webb found abundant dust as well as hydrogen, which means this galaxy has the building blocks not only for stars but also for planets. This is interesting to astronomers who had wanted to study the Small Magellanic Cloud because its composition makes it similar to much older galaxies that existed in a period of the universe called the cosmic noon, around 2 to 3 billion years after the Big Bang.

“A galaxy during cosmic noon wouldn’t have one NGC 346 like the Small Magellanic Cloud does; it would have thousands,” leader of the research team, Margaret Meixner of the Universities Space Research Association, explained in a statement. “But even if NGC 346 is now the one and only massive cluster furiously forming stars in its galaxy, it offers us a great opportunity to probe conditions that were in place at cosmic noon.”

The fact that there could be materials required to create rocky planets in such a galaxy raises questions about the timeline of planet formation in the universe. “We’re seeing the building blocks, not only of stars but also potentially of planets,” said co-author Guido De Marchi of the European Space Agency. “And since the Small Magellanic Cloud has a similar environment to galaxies during cosmic noon, it’s possible that rocky planets could have formed earlier in the universe than we might have thought.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more
See a stunning 3D visualization of astronomy’s most beautiful object
This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light).

This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light). Greg Bacon (STScI), Ralf Crawford (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI), Frank Summers (STScI), NASA's Universe of Learning

The Pillars of Creation are perhaps the most famous object in all of astronomy. Part of the Eagle Nebula, this vista was first captured by the Hubble Space Telescope in 1995, and has captivated the public ever since with its dramatic rising pillars of dust and gas that stretch several light-years high. The nebula has been imaged often since then, including again by Hubble in 2014 and more recently by the James Webb Space Telescope in 2022.

Read more
Gorgeous Webb image of Serpens Nebula shows a strange alignment
This image shows the centre of the Serpens Nebula as seen by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam).

The Serpens Nebula, located 1,300 light-years from Earth, is home to a particularly dense cluster of newly forming stars (about 100,000 years old), some of which will eventually grow to the mass of our Sun. Webb’s image of this nebula revealed a grouping of aligned protostellar outflows (seen in the top left). These jets are identified by bright clumpy streaks that appear red, which are shock waves caused when the jet hits the surrounding gas and dust. NASA, ESA, CSA, STScI, K. Pontoppidan (NASA’s Jet Propulsion Laboratory), J. Green (Space Telescope Science Institute)

This stunning new image from the James Webb Space Telescope shows the famous Serpens Nebula, a dense star-forming region where new stars are being born amid clouds of dust and gas. Unlike some other nebulae, which are illuminated by radiation from stars that causes them to glow, this is a type called a reflection nebula, so it only shines due to the light that reflects from other sources.

Read more