Skip to main content

James Webb captures stunning image of supernova remnant Cassiopeia A

A stunning new image from the James Webb Space Telescope shows a famous supernova remnant called Cassiopeia A, or Cas A. When a massive star comes to the end of its life and explodes in a huge outpouring of light and energy called a supernova, it leaves behind a dense core that can become a black hole or a neutron star. But that’s not all that remains after a supernova: the explosion can leave its mark on nearby clouds of dust and gas that are formed into intricate structures.

The image of Cas A was taken using Webb’s MIRI instrument, which looks in the mid-infrared range. Located 11,000 light-years away, Cassiopeia A is one of the brightest objects in the sky in the radio wavelength, and is also visible in the optical, infrared, and X-ray wavelengths. To see the different features picked up in different wavelengths, you can look at the slider comparison of the Webb infrared image alongside a Hubble visible light image of the same object.

Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.This image combines various filters with the color red assigned to 25.5 microns (F2550W), orange-red to 21 microns (F2100W), orange to 18 microns (F1800W), yellow to 12.8 microns (F1280W), green to 11.3 microns (F1130W), cyan to 10 microns (F1000W), light blue to 7.7 microns (F770W), and blue to 5.6 microns (F560W). The data comes from general observer program 1947.
Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.  IMAGE: NASA, ESA, CSA, Danny Milisavljevic (Purdue University), Tea Temim (Princeton University), Ilse De Looze (UGent) IMAGE PROCESSING: Joseph DePasquale (STScI)

With Webb’s high sensitivity, new details are visible in this remnant. “Compared to previous infrared images, we see incredible detail that we haven’t been able to access before,” said Tea Temim of Princeton University, a co-investigator of the Webb observation program, which took the image, in a statement.

By studying these details, astronomers can learn about the aftereffects of supernovae — which is particularly important because these explosions create many of the heavier elements in our universe such as silicon, sulfur, and iron. “Cas A represents our best opportunity to look at the debris field of an exploded star and run a kind of stellar autopsy to understand what type of star was there beforehand and how that star exploded,” said principal investigator Danny Milisavljevic of Purdue University.

“By understanding the process of exploding stars, we’re reading our own origin story,” said Milisavljevic. “I’m going to spend the rest of my career trying to understand what’s in this data set.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Euclid space telescope captures stunning images of far-off galaxies
This image is released as part of the Early Release Observations from ESA’s Euclid space mission. All data from these initial observations are made public on 23 May 2024 – including a handful of unprecedented new views of the nearby Universe, this being one. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented – it is the first shot of this young star-forming region at this width and depth.

This image is released as part of the Early Release Observations from ESA’s Euclid space mission. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented, as it is the first shot of this young star-forming region at this width and depth. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

New images from the European Space Agency (ESA)'s Euclid telescope show a gorgeous range of cosmic objects, from bustling stellar nurseries to enormous galaxy clusters. The first science data from the telescope has also been released, showing how the telescope will contribute to the study of dark matter and dark energy.

Read more
Stunning images of Jupiter’s moon Europa show it has a floating icy shell
Jupiter’s moon Europa was captured by the JunoCam instrument aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022. The images show the fractures, ridges, and bands that crisscross the moon’s surface.

This image of Jupiter’s moon Europa was captured by the JunoCam instrument aboard NASA’s Juno spacecraft during the mission’s close flyby on September 29, 2022. The image shows the fractures, ridges, and bands that crisscross the moon’s surface. Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing: Björn Jónsson (CC BY 3.0)

NASA's Juno mission is busy studying not only the planet of Jupiter, with its strange weather and strong magnetic field, but also several of its icy moons ,including the intriguing Europa. Often a top target of habitability research, Europa is exciting as a potential host for life because it is thought to have a liquid water ocean -- although this ocean is beneath an icy crust up to 15 miles thick. Juno has taken high-definition photos of Europa's surface, and scientists have recently analyzed this data to identify fractures and other features running across the icy shell.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more