Skip to main content

James Webb discovers the most distant galaxy ever observed

JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.
JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Credit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA). NASA

Researchers using the James Webb Space Telescope have discovered the most distant known galaxy to date, one that is so far away that it existed just a few hundred million years after the Big Bang. Since Webb began its science operations in 2022, astronomers have used it to look for very distant, very ancient galaxies and have been surprised by what they found. Not only have they found many of these distant galaxies, but the galaxies are also brighter and more massive than they expected — suggesting that galaxies evolved into large sizes faster than anyone imagined.

Recommended Videos

The newly discovered galaxy, called JADES-GS-z14-0, is named after the JWST Advanced Deep Extragalactic Survey (JADES) program and has a redshift of over 14. Redshift is a phenomenon in which light that is coming from a very distant object is pushed toward the red end of the spectrum due to the expansion of the universe, so the further away something is, the more red its light appears. For the very early galaxies observed by Webb, their light has been shifted so far to the red end of the spectrum that it no longer appears as visible light, but instead as infrared. Webb’s infrared instruments (unlike, say, the primarily visible light instruments used by telescopes like Hubble) are perfect for detecting these extremely distant galaxies.

And because light takes time to travel great distances, finding very distant galaxies is like looking back into the past, as these galaxies appear as they were when the universe was still very young.

In the case of JADES-GS-z14-0, scientists were surprised to see such a bright galaxy at this early stage of the universe. “The size of the galaxy clearly proves that most of the light is being produced by large numbers of young stars,” explained researcher Daniel Eisenstein from the Center for Astrophysics | Harvard & Smithsonian in a statement, “rather than material falling onto a supermassive black hole in the galaxy’s center, which would appear much smaller.”

This brightness suggests that big, bright galaxies could form in this early period, contrary to what was commonly believed before the launch of Webb. “JADES-GS-z14-0 now becomes the archetype of this phenomenon,” said researcher Stefano Carniani of the Scuola Normale Superiore in Pisa, Italy. “It is stunning that the universe can make such a galaxy in only 300 million years.”

New data like the discovery of this galaxy is changing the way that astronomers think about the evolution of galaxies in the early universe. “This amazing object shows that galaxy formation in the early universe is very rapid and intense,” said Ben Johnson of the Center for Astrophysics, “and JWST will allow us to find more of these galaxies, perhaps when the universe was even younger. It is a marvelous opportunity to study how galaxies get started.”

The research will be published in three upcoming papers.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
The most distant galaxy ever discovered holds a surprising secret
This is an artist’s impression of JADES-GS-z14-0, which as of today is the most distant confirmed galaxy. Galaxies in the early Universe tend to be clumpy and irregular. Supernova explosions in this galaxy would have spread heavy elements forged inside stars, like oxygen, which has been now detected with the Atacama Large Millimeter/submillimeter Array (ALMA).

Tools like the James Webb Space Telescope are allowing scientists to look further back into the history of the universe than ever before, discovering incredibly distant objects like a galaxies from the first few hundred million years of the universe. Now, astronomers have looked at galaxy JADES-GS-z14-0, the most distant galaxy known, and found something even more remarkable: indications of oxygen present there.

This galaxy is so far away that its light took 13.4 billion years to reach us, meaning that we get a view of what it looked like just 300 million years after the Big Bang. For such a young galaxy in the early stage of the universe, scientists would expect to find lots of hydrogen and helium as these elements were present in the earliest galaxies -- but using a ground-based telescope called ALMA (Atacama Large Millimeter Array), they also found oxygen. That wouldn't have been expected to turn up until the galaxy was much older.

Read more
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more