Skip to main content

James Webb spots two of the earliest galaxies ever seen

The James Webb Space Telescope has discovered two of the earliest galaxies ever seen in the universe, and they are much brighter than expected, meaning astronomers are rethinking their beliefs about how the earliest stars formed.

“These observations just make your head explode,” said Paola Santini, one of the researchers, in a statement. “This is a whole new chapter in astronomy. It’s like an archaeological dig, when suddenly you find a lost city or something you didn’t know about. It’s just staggering.”

Two of the most distant galaxies seen to date are captured in these Webb pictures of the outer regions of the giant galaxy cluster Abell 2744. The galaxies are not inside the cluster, but many billions of light-years behind it. 
Two of the most distant galaxies seen to date are captured in these Webb pictures of the outer regions of the giant galaxy cluster Abell 2744. The galaxies are not inside the cluster, but many billions of light-years behind it. NASA, ESA, CSA, T. Treu (UCLA)

The two galaxies are thought to be billions of years old, from just 100 million years after the Big Bang. Webb is able to look back at some of the earliest galaxies, because it operates in the infrared range, meaning it can see galaxies that are redshifted.

Redshift happens when light from a distant galaxy is shifted to the red end of the spectrum because of the expansion of the universe. The stronger the shift, the more distant the galaxy. The light from some galaxies is shifted so far that it moves out of the visible light spectrum and into the infrared, where Webb can see it. Previous research had estimated that some galaxies Webb detected could have a redshift as high as 14, but the recent results are more accurate thanks to better calibration of the instruments and suggest a redshift for the two galaxies of 10.5 and 12.5, respectively.

Webb also takes advantage of a phenomenon called gravitational lensing, in which a massive object like a galaxy or galaxy cluster has so much mass that it warps space and acts like a magnifying glass, allowing researchers to see even more distant galaxies behind it.

The big surprise is that both of the galaxies observed are much brighter than researchers had thought they would be. They were also spotted very quickly, in the first few days of Webb observations, suggesting that early galaxies could be more numerous than previously thought.

“We’ve nailed something that is incredibly fascinating. These galaxies would have had to have started coming together maybe just 100 million years after the Big Bang. Nobody expected that the dark ages would have ended so early,” said another of the researchers, Garth Illingworth. “The primal Universe would have been just one hundredth of its current age. It’s a sliver of time in the 13.8-billion-year-old evolving cosmos.”

The researchers suggest that either the early galaxies could be much more massive than thought, with many more stars than expected, or that they could be less massive but with stars that shined very brightly and are quite different from the stars we see today. To learn more and to confirm the age of these universes, the researchers plan to perform more observations with Webb’s spectroscopy instruments.

“Everything we see is new. Webb is showing us that there’s a very rich universe beyond what we imagined,” said researcher Tommaso Treu. “Once again the universe has surprised us. These early galaxies are very unusual in many ways.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more