Skip to main content

This galaxy cluster is so massive it warps space-time and bends light

It’s hard to comprehend the scale of the universe. It’s difficult to imagine even the size of the entire solar system, let alone our galaxy. And our galaxy is just one among billions in the universe. In fact, galaxies don’t just exist alone, but often interact with each other — and often come together in vast groups called galaxy clusters.

This week’s image from the Hubble Space Telescope shows one such galaxy cluster named Abell 1351, located in the constellation of Ursa Major. Galaxy clusters are groups of thousands of galaxies held together by gravity, and their masses are measured on the scale of quadrillions of times the mass of the sun. This particular observation shows what kind of effects that much mass can have on space-time.

The massive galaxy cluster Abell 1351 is captured in this image by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. This galaxy cluster lies in the constellation Ursa Major in the northern hemisphere.
The massive galaxy cluster Abell 1351 is captured in this image by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. This galaxy cluster lies in the constellation Ursa Major in the northern hemisphere. ESA/Hubble & NASA, H. Ebeling Acknowledgement: L. Shatz

Across the image, you can see streaks of light which are pictures of distant galaxies. Because the mass of the galaxy cluster is so great, it warps space-time enough that light passing through it gets bent and spread out, like a magnifying glass. This is called gravitational lensing, and it allows researchers to see objects such as galaxies that are far further away than we could normally observe.

There are different degrees of gravitational lensing, depending on the mass of the object acting as a lens. If the lens is massive enough and the light source is close to it, it will bend light to such a degree that you might see multiple images of the same light source. That’s called strong gravitational lensing. There is also an effect called weak gravitational lensing, in which the lens is less massive or the light source is far away, which can stretch the light source and make it appear larger or of a different shape.

There’s also an effect called microlensing, which is used to detect exoplanets, in which light from a distant object (a star in this case) appears brighter because of the body in front of it (the exoplanet).

Both strong and weak microlensing are caused by Abell 1351, and the cluster is being studied to both determine its mass and in order to see distant galaxies.

“This observation is part of an astronomical album comprising snapshots of some of the most massive galaxy clusters,” Hubble scientists write. “This menagerie of massive clusters demonstrates interesting astrophysical phenomena such as strong gravitational lensing, as well as showcasing spectacular examples of violent galaxy evolution.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Watch SpaceX stack its Starship rocket in super-quick time
SpaceX's Starship spacecraft atop the Super Heavy booster.

SpaceX has shared a cool video showing its robotic “Mechazilla” launch tower stacking its Starship rocket ahead of the vehicle's third test flight.

SpaceX sped up the video (below) to show the stacking process in super-quick time. As the footage shows, the tower at SpaceX’s Starbase facility in Boca Chica, Texas, uses two arms to grab the rocket’s upper stage before carrying it to the top of the first-stage booster. The company also shared some spectacular images showing the rocket at the launch site on the coast of southern Texas.

Read more
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
Private astronauts enjoy extra time aboard the space station
The Axiom-3 crew aboard the ISS.

The Ax-3 crew aboard the ISS. Axiom Space/NASA

Private astronauts who had been expecting to stay aboard the International Space Station (ISS) for two weeks will be staying a few extra days after their departure date was changed due to poor weather conditions at the landing site.

Read more