Skip to main content

Mystery of a strange, mirrored double galaxy solved using Hubble data

When telescopes like Hubble peer out into the cosmos, they can sometimes sneak a view of very distant objects using a phenomenon called gravitational lensing. This is where a massive object like a galaxy passes between a distant object and Earth, and the gravity of this intermediate object warps spacetime and acts as a magnifying glass. This allows astronomers to glimpse objects which would otherwise be too faint and far away to be visible.

But sometimes these phenomena result in strange outcomes, like an oddity spotted by Hubble in 2013 which appeared to be two objects that were perfect mirror images of each other.

This Hubble Space Telescope snapshot shows three magnified images of a distant galaxy embedded in a cluster of galaxies.
This Hubble Space Telescope snapshot shows three magnified images of a distant galaxy embedded in a cluster of galaxies. LEAD AUTHOR: NASA, ESA, Richard E. Griffiths (UH Hilo) CO-AUTHOR: Jenny Wagner (ZAH) IMAGE PROCESSING: Joseph DePasquale (STScI)

Astronomers are used to seeing galaxies that appear to be stretched into odd shapes due to gravitational lensing, but this mirroring effect was baffling. “We were really stumped,” said astronomer Timothy Hamilton of Shawnee State University, who first spotted the object, in a statement.

Since then, Hamilton and others have been studying the strange object and have finally figured out its puzzling nature. They found that there was a massive cluster of galaxies that was previously uncataloged between Earth and the object, aligned in such a way that it produced two twin images of the distant galaxy. The background galaxy stretches across a ripple in space created by dark matter — and this ripple creates not only the two mirrored images but also a third image of the galaxy positioned to one side.

“Think of the rippled surface of a swimming pool on a sunny day, showing patterns of bright light on the bottom of the pool,” explained another of the researchers, Richard Griffiths of the University of Hawaii in Hilo. “These bright patterns on the bottom are caused by a similar kind of effect as gravitational lensing. The ripples on the surface act as partial lenses and focus sunlight into bright squiggly patterns on the bottom.”

This very rare finding doesn’t only let astronomers sneak a peek at a distant galaxy — it can also help them learn about the dark matter which makes up a large percentage of our universe, by showing how “clumpy” or “smooth” it is. That’s important as there’s a lot we are yet to understand about this mysterious matter.

“We know it’s some form of matter, but we have no idea what the constituent particle is,” Griffiths said. “So we don’t know how it behaves at all. We just know that it has mass and is subject to gravity. The significance of the limits of size on the clumping or smoothness is that it gives us some clues as to what the particle might be. The smaller the dark matter clumps, the more massive the particles must be.”

The research is published in the journal The Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Euclid mission launches to probe the mysteries of dark matter
This artist’s concept shows the ESA (European Space Agency) Euclid mission in space.

The European Space Agency (ESA) has successfully launched its Euclid space telescope to study the mysteries of dark matter and dark energy. The spacecraft launched from Cape Canaveral in Florida using a SpaceX Falcon 9 rocket, with liftoff at 11:12 a.m. ET (8:12 a.m. PT).

This artist’s concept shows the ESA (European Space Agency) Euclid mission in space. ESA, CC BY-SA 3.0 IGO

Read more
Hubble image of the week shows an unusual jellyfish galaxy
The jellyfish galaxy JO206 trails across this image from the NASA/ESA Hubble Space Telescope, showcasing a colorful star-forming disk surrounded by a pale, luminous cloud of dust. A handful of foreground bright stars with crisscross diffraction spikes stands out against an inky black backdrop at the bottom of the image. JO206 lies over 700 million light-years from Earth in the constellation Aquarius.

This week's image from the Hubble Space Telescope shows an unusual type of galaxy named for its aquatic look-alike: a jellyfish.

The jellyfish galaxy JO206 is shown below in an image taken using Hubble's Wide Field Camera 3 instrument. Located 700 million light-years away, in the constellation of Aquarius, this image of the galaxy shows both the bright center of the galaxy and its long tendrils reaching out toward the bottom right. It is these tendrils that give jellyfish galaxies their names, and they are formed through a process called ram pressure stripping.

Read more
There’s a cosmic jellyfish in this week’s Hubble image
The galaxy JW100 (lower right) features prominently in this image from the NASA/ESA Hubble Space Telescope. The streams of star-forming gas dripping from the disk of the galaxy like streaks of fresh paint are formed by a process called ram pressure stripping. Their resemblance to dangling tentacles led astronomers to refer to JW100 as a ‘jellyfish’ galaxy. JW100 is over 800 million light-years away, in the constellation Pegasus.

This week's Hubble image shows an unusual type of galaxy that might seen more at home in the ocean than among the stars: a jellyfish galaxy. These galaxies have a main body of stars, with tentacle-like structures reaching off away from the body in just one direction. This particular jellyfish galaxy, known as JW100, is located more than 800 million light-years away and is found in the constellation of Pegasus.

The jellyfish galaxy is located toward the bottom right of the image, with purple-pink tentacles of stars reaching downward. In the upper middle part of the image, you'll also see two very bright blobs, which are the core of another galaxy within the same galaxy cluster. This nearby galaxy, called IC 5338, is the brightest one within the cluster and has a large glowing area around it called a halo.

Read more