Skip to main content

Hubble finds mysterious and elusive black hole

An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole.
An international team of astronomers has used more than 500 images from the NASA/European Space Agency (ESA) Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence of the presence of an intermediate-mass black hole. ESA/Hubble & NASA, M. Häberle (MPIA)

There’s something strange about black holes. Astronomers often find small black holes, which are between five times and 100 times the mass of the sun. And they often find huge supermassive black holes, which are hundreds of thousands of times the mass of the sun or even larger. But they almost never find black holes in between those two sizes.

Recommended Videos

That’s odd for several reasons, but one particular question it raises is how black holes develop. If they start out small and then gradually get bigger over time, then where are all the medium-sized black holes? And if they only come in small or huge sizes, why should that be? There’s nothing that we currently know about the physics of black holes that would prevent medium-sized black holes from existing.

So for years, astronomers have been searching for these elusive intermediate-mass black holes (IMBH). Now, the Hubble Space Telescope has uncovered some of the most compelling evidence to date of an IMBH within the Milky Way in the cluster of Omega Centauri.

This cluster is made up of around 10 million stars, and astronomers have been working on cataloguing these stars using Hubble images. And while they were cataloguing, they noticed something odd. “We discovered seven stars that should not be there,” said lead researcher Maximilian Häberle of the Max Planck Institute for Astronomy in Germany in a statement. “They are moving so fast that they should escape the cluster and never come back. The most likely explanation is that a very massive object is gravitationally pulling on these stars and keeping them close to the center.

“The only object that can be so massive is a black hole, with a mass at least 8,200 times that of our sun.”

That 8,200 figure is important because it puts the object firmly in the IMBH size range. Previous studies have hinted that there could be an IMBH in this region before, but this is the best evidence yet — and it points to a relatively nearby IMBH that could be studied further to learn more about black hole evolution.

Now, the researchers want to study this black hole in more detail using the James Webb Space Telescope to learn about its exact mass and position.

The research is published in the journal Nature.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble spots a cosmic bullseye: a galaxy with nine rings
LEDA 1313424, aptly nicknamed the Bullseye, is two and a half times the size of our Milky Way and has nine rings — six more than any other known galaxy. High-resolution imagery from NASA’s Hubble Space Telescope confirmed eight rings, and data from the W. M. Keck Observatory in Hawaii confirmed a ninth. Hubble and Keck also confirmed which galaxy dove through the Bullseye, creating these rings: the blue dwarf galaxy that sits to its immediate center-left.

The Hubble Space Telescope has captured this striking image of an unusual galaxy with a bullseye structure, as nine rings surround its central point. Technically known as LEDA 1313424, the galaxy has more rings than any other known galaxy, and studying it is helping astronomers to learn how galaxies like this are created.

Along with the W. M. Keck Observatory in Hawai'i, astronomers used Hubble to see that there was not just one ring around this galaxy but many. "This was a serendipitous discovery," said lead researcher Imad Pashaof Yale University. "I was looking at a ground-based imaging survey and when I saw a galaxy with several clear rings, I was immediately drawn to it. I had to stop to investigate it."

Read more
Hubble snaps another gorgeous image of the Tarantula Nebula
This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa.

This gorgeous new image from the Hubble Space Telescope shows a bustling nearby star forming region called the Tarantula Nebula. Given its name due to its complex, web-like internal structure, this nebula is located in a satellite galaxy of the Milky Way called the Large Magellanic Cloud and is often studied by astronomers researching star formation and evolution.

This new image shows the edges of the nebula, further out from its center. In the middle of the nebula are enormous stars that are as much as 200 times the mass of the sun, but here on the outskirts the view is calmer.

Read more
Group wants to launch a telescope to study black holes from space
Artist concept of the proposed BHEX network.

Black holes are some of the most extreme objects in the universe, and a new mission proposal suggests launching a space telescope specifically to study them. The Event Horizon Telescope (EHT) group, which took both the first-ever image of a black hole in 2019 and the first-ever image of the supermassive black hole at the center of our galaxy in 2022, has plans for a new mission called the Black Hole Explorer (BHEX).

The idea of BHEX is to use a space-based telescope to collect even more detailed information from black holes, as there is less interference from water vapor when viewing them from above the Earth's atmosphere. The aim would be to combine data from this telescope with the many telescopes on the ground that are already used in the EHT project. The next phase of the project is a collaboration between the Center for Astrophysics | Harvard & Smithsonian (CfA) and the National Radio Astronomy Observatory (NRAO).

Read more