Skip to main content

Hubble goes hunting for elusive medium-sized black holes

There’s something odd about the black holes discovered to date. We’ve found plenty of smaller black holes, with masses less than 100 times that of the sun, and plenty of huge black holes, with masses millions or even billions of times that of the sun. But we’ve found hardly any black holes in the intermediate mass range, arguably not enough to confirm that they even exist, and it’s not really clear why.

Now, astronomers are using the Hubble Space Telescope to hunt for these missing black holes. Hubble has previously found some evidence of black holes in this intermediate range, and now it is being used to search for examples within a few thousand light-years of Earth.

A Hubble Space Telescope image of the globular star cluster, Messier 4. The cluster is a dense collection of several hundred thousand stars. Astronomers suspect that an intermediate-mass black hole, weighing as much as 800 times the mass of our Sun, is lurking, unseen, at its core.
A Hubble Space Telescope image of the globular star cluster Messier 4. The cluster is a dense collection of several-hundred-thousand stars. Astronomers suspect that an intermediate-mass black hole, with as much as 800 times the mass of our sun, is lurking, unseen, at its core. ESA/Hubble & NASA

It’s tricky to spot these intermediate black holes because the effect they have on stars around them is more modest than that of the huge supermassive black holes that astronomers usually observe. Hubble has been observing targets like Messier 4, a globular cluster that is thought to hold a black hole with a mass around 800 times that of the sun. The black hole can’t be observed directly, but its presence can be inferred by looking at its subtle effects on nearby stars.

Recommended Videos

The researchers also used data from Gaia, a project to create a 3D map of stars in the Milky Way, which helped to provide information on the shape of the globular cluster. Even with these two powerful telescopes, though, it’s still difficult for researchers to know whether they are looking at a black hole or a bunch of less dense objects like neutron stars or white dwarfs.

“Using the latest Gaia and Hubble data, it was not possible to distinguish between a dark population of stellar remnants and a single larger point-like source,” explained the lead author of the research, Eduardo Vitral of the Space Telescope Science Institute, in a statement. “So one of the possible theories is that rather than being lots of separate small dark objects, this dark mass could be one medium-sized black hole.”

If there were a bunch of objects close together, they would have to be crammed together in an unstable formation. The more likely explanation is that there is one single black hole with an intermediate mass.

“We have good confidence that we have a very tiny region with a lot of concentrated mass,” Vitral said. “It’s about three times smaller than the densest dark mass that we had found before in other globular clusters. The region is more compact than what we can reproduce with numerical simulations when we take into account a collection of black holes, neutron stars, and white dwarfs segregated at the cluster’s center. They are not able to form such a compact concentration of mass.”

That means the researchers can’t be completely sure that they have found one of the elusive intermediate black holes, but it is a definite possibility. And that means there’s more exiting research to come. “Science is rarely about discovering something new in a single moment,” said Gaia mission scientist Timo Prusti. “It’s about becoming more certain of a conclusion step by step, and this could be one step towards being sure that intermediate-mass black holes exist.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Group wants to launch a telescope to study black holes from space
Artist concept of the proposed BHEX network.

Black holes are some of the most extreme objects in the universe, and a new mission proposal suggests launching a space telescope specifically to study them. The Event Horizon Telescope (EHT) group, which took both the first-ever image of a black hole in 2019 and the first-ever image of the supermassive black hole at the center of our galaxy in 2022, has plans for a new mission called the Black Hole Explorer (BHEX).

The idea of BHEX is to use a space-based telescope to collect even more detailed information from black holes, as there is less interference from water vapor when viewing them from above the Earth's atmosphere. The aim would be to combine data from this telescope with the many telescopes on the ground that are already used in the EHT project. The next phase of the project is a collaboration between the Center for Astrophysics | Harvard & Smithsonian (CfA) and the National Radio Astronomy Observatory (NRAO).

Read more
Feast your eyes on 10 years of Hubble images of Jupiter, Saturn, Uranus, Neptune
This is a montage of NASA/ESA Hubble Space Telescope views of our solar system's four giant outer planets: Jupiter, Saturn, Uranus, and Neptune, each shown in enhanced color. The images were taken over nearly 10 years, from 2014 to 2024.

While the Hubble Space Telescope might be most famous for its images of beautiful and far-off objects like nebulae or distant galaxies, it also takes images of objects closer to home, including the planets right here in our own solar system. For the past 10 years, Hubble has been studying the outer planets in a project called OPAL (Outer Planet Atmospheres Legacy), capturing regular images of each of the four outer planets so scientists can study their changes over time.

The planets Jupiter, Saturn, Uranus, and Neptune are different in many ways from Earth, as they are gas giants and ice giants rather than rocky planets. But they do have some similar phenomena, such as weather that regularly changes, including epic events like storms that are so large they can be seen from space. Jupiter's Great Red Spot, for example, the big orange-red eye shape that is visible on most images of the planet, is an enormous storm larger than the width of the entire Earth and which has been raging for centuries.

Read more
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more