Skip to main content

Hubble images the spooky Spider Galaxy

This week’s image from the Hubble Space Telescope shows an irregular galaxy, the spindly arms and clawed shape of which has led to it being named the Spider Galaxy. Located 30 million light-years away, the galaxy also known as UGC 5829 is an irregular galaxy that lacks the clear, orderly arms seen in spiral galaxies like the Milky Way.

This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829.
This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829. ESA/Hubble & NASA, R. Tully, M. Messa

As it is diffuse and faint, this galaxy has not often been studied. It does have a similarly named partner galaxy, the Spiderweb Galaxy, or MRC 1138-262, which has been more extensively studied — including by Hubble. The Spiderweb Galaxy is located 300 times further from Earth than the Spider Galaxy, but has been a target for research looking into how smaller galaxies merge to create one larger galaxy.

As for the Spider Galaxy, this image is made up of data from two different research programs. “The data in this image come from two Hubble observing programs. The first used Hubble’s Advanced Camera for Surveys to look at relatively nearby galaxies in an effort to build color versus brightness diagrams of the stars in these galaxies. Each observation only took one Hubble orbit (about 95 minutes) but provided a valuable archival record of the types of stars in different galaxies and therefore different environments,” Hubble scientists explain in a statement.

“The second program used Hubble’s Wide Field Camera 3 to look at star clusters in dwarf galaxies. Their observations leveraged Hubble’s ultraviolet capabilities, along with its ability to see fine details, to better understand the environment where stars form in dwarf galaxies. The star-forming regions of UGC 5829 are readily visible in this image as bright-pink nebulae or clouds.”

While Hubble’s instruments operate primarily in the visible light range, which is the same range of wavelengths that can be seen by the human eye, they do also have the ability to look in some ultraviolet and infrared wavelengths. Using these different wavelengths allows scientists to observe features that would otherwise be hard to detect, as seen in this ultraviolet image of Jupiter taken by Hubble that shows off the planet’s great red spot.

You can get an idea of what the same object looks like at different wavelengths by comparing objects viewed by Hubble‘s visible light instruments with those viewed by the James Webb Space Telescope’s infrared instruments.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble images a pair of tiny dwarf galaxies
hubble dwarf galaxy pair ic3430 potw2431a 1

A new image from the Hubble Space Telescope shows a small dwarf galaxy called IC 3430 that's located 45 million light-years away. This galaxy is classified as both a dwarf galaxy, because of its small size, and an elliptical galaxy, because of its form.

Elliptical galaxies are smooth and featureless, appearing blob-like and diffuse, unlike spiral galaxies, like our Milky Way, which have a distinct structure of a central hub and stretching spiral arms.

Read more
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
See 25 gorgeous images of space to celebrate Chandra’s 25th birthday
nasa chandra 25 anniversary 25th lg jpg 92

Today, July 23, marks the 25th anniversary of one of NASA's lesser known but highly prolific space telescopes. The Chandra X-ray Observatory was launched on July 23, 1999, and over its tenure has produced hundreds of stunning images of space -- including 25 new images that have been released to celebrate the occasion.

Unlike Hubble, which looks primarily at the same wavelengths as the human eye (called the optical or visible light range), or James Webb, which looks in the infrared, Chandra operates in the X-ray portion of the spectrum. That allows it to see effects of high-energy events like kilonovas, and to investigate objects like supermassive black holes. It also gives different views of supernovas and the remnants they leave behind.

Read more