Skip to main content

Hubble captures a stunning ultraviolet image of Jupiter

You can now see Jupiter in a whole new way, thanks to a new image from the Hubble Space Telescope. Showing the planet in the ultraviolet wavelength, the image highlights the planet’s Great Red Spot — an enormous storm larger than the width of the entire Earth that has been raging for hundreds of years.

The image was released in celebration of Jupiter reaching opposition, meaning it is directly opposite the sun as viewed from the Earth. That means that if you are a keen stargazer, now is a great time to go and look for Jupiter in the night sky as it will look its biggest and brightest.

NASA's Hubble Space Telescope reveals an ultraviolet view of Jupiter.
NASA’s Hubble Space Telescope reveals an ultraviolet view of Jupiter. NASA, ESA, and M. Wong (University of California - Berkeley); Processing: Gladys Kober (NASA/Catholic University of America)

The Hubble Space Telescope looks mostly in the optical light wavelength, which is the same as the human eye can see. But it also has the ability to go  beyond this range, both a little bit into the infrared and, in this case, into the ultraviolet. Looking at different wavelengths allows scientists to see different features of cosmic objects like planets and galaxies.

The James Webb Space Telescope, for example, looks in the infrared to observe extremely distant galaxies that are traveling away from us and, as a result. have light that is shifted into the infrared via a process called redshift. The infrared is also useful for being able to look through clouds of dust.

Looking in the ultraviolet wavelength, on the other hand, is useful for observing objects like very young, very hot stars, or looking at the sparse gas and dust floating between stars, called the interstellar medium.

In this case, the view Hubble has of Jupiter is part of a project to study its turbulent atmosphere, looking particularly at its superstorm, the Great Red Spot. The different wavelengths of ultraviolet light are translated into the visible light spectrum to give this color effect.

“Though the storm appears red to the human eye, in this ultraviolet image, it appears darker because high-altitude haze particles absorb light at these wavelengths,” NASA explains in a statement. “The reddish, wavy polar hazes are absorbing slightly less of this light due to differences in either particle size, composition, or altitude.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble images the spooky Spider Galaxy
This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829.

This week's image from the Hubble Space Telescope shows an irregular galaxy, the spindly arms and clawed shape of which has led to it being named the Spider Galaxy. Located 30 million light-years away, the galaxy also known as UGC 5829 is an irregular galaxy that lacks the clear, orderly arms seen in spiral galaxies like the Milky Way.

This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829. ESA/Hubble & NASA, R. Tully, M. Messa

Read more
See the stunning Vela supernova remnant in exquisite detail in expansive image
This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.

A new image of the ghostly Vela supernova remnant shows off the fascinating and elaborate structure of this striking cosmic object. Taken using the Dark Energy Camera (DECam), this enormous image is 1.3 gigapixels, making it DECam's largest image to date.

This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the U.S. National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile. CTIO/NOIRLab/DOE/NSF/AURA Image Processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani & D. de Martin (NSF’s NOIRLab)

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more