Skip to main content

Hubble captures a stunning ultraviolet image of Jupiter

You can now see Jupiter in a whole new way, thanks to a new image from the Hubble Space Telescope. Showing the planet in the ultraviolet wavelength, the image highlights the planet’s Great Red Spot — an enormous storm larger than the width of the entire Earth that has been raging for hundreds of years.

The image was released in celebration of Jupiter reaching opposition, meaning it is directly opposite the sun as viewed from the Earth. That means that if you are a keen stargazer, now is a great time to go and look for Jupiter in the night sky as it will look its biggest and brightest.

NASA's Hubble Space Telescope reveals an ultraviolet view of Jupiter.
NASA’s Hubble Space Telescope reveals an ultraviolet view of Jupiter. NASA, ESA, and M. Wong (University of California - Berkeley); Processing: Gladys Kober (NASA/Catholic University of America)

The Hubble Space Telescope looks mostly in the optical light wavelength, which is the same as the human eye can see. But it also has the ability to go  beyond this range, both a little bit into the infrared and, in this case, into the ultraviolet. Looking at different wavelengths allows scientists to see different features of cosmic objects like planets and galaxies.

The James Webb Space Telescope, for example, looks in the infrared to observe extremely distant galaxies that are traveling away from us and, as a result. have light that is shifted into the infrared via a process called redshift. The infrared is also useful for being able to look through clouds of dust.

Looking in the ultraviolet wavelength, on the other hand, is useful for observing objects like very young, very hot stars, or looking at the sparse gas and dust floating between stars, called the interstellar medium.

In this case, the view Hubble has of Jupiter is part of a project to study its turbulent atmosphere, looking particularly at its superstorm, the Great Red Spot. The different wavelengths of ultraviolet light are translated into the visible light spectrum to give this color effect.

“Though the storm appears red to the human eye, in this ultraviolet image, it appears darker because high-altitude haze particles absorb light at these wavelengths,” NASA explains in a statement. “The reddish, wavy polar hazes are absorbing slightly less of this light due to differences in either particle size, composition, or altitude.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the stunning first images taken by the dark matter-hunting Euclid telescope
The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars.

The European Space Agency (ESA) has released the first full-color images taken by Euclid, a space telescope that was launched earlier this year to probe the mysteries of dark matter and dark energy. Euclid will image a huge area of the sky to build up a 3D map of the universe, helping researchers to track the dark matter that is clustered around galaxies and the dark energy that counteracts gravity to push galaxies apart.

The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Read more
James Webb snaps an image of the famous and beautiful Crab Nebula
NASA’s James Webb Space Telescope has gazed at the Crab Nebula in the search for answers about the supernova remnant’s origins. Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) have revealed new details in infrared light.

Located 6,500 light-years away, the Crab Nebula is famous among astronomers for its elaborate and beautiful structure. A new image from the James Webb Space Telescope shows off the gorgeous nebula as seen in the infrared wavelength, highlighting the filaments of dust that create its cage-like shape.

The nebula is a supernova remnant, the result of a massive star that exploded at the end of its life centuries ago. The supernova was observed on Earth in 1054 CE, and since then astronomers have watched the nebula that resulted from that explosion grow and change.

Read more
NASA releases ‘ghostly cosmic hand’ image for Halloween
NASA's image of a ghostly cosmic hand in deep space.

To mark Halloween, NASA has released a spooky image of what it describes as a "ghostly cosmic hand."

It actually shows MSH 15-52, a cloud of energetic particles that resembles a human hand.

Read more