Skip to main content

James Webb captures a gorgeous stellar nursery in nearby dwarf galaxy

A gorgeous new image from the James Webb Space Telescope shows a stunning sight from one of our galactic neighbors. The image shows a region of star formation called NGC 346, where new stars are being born. It’s located in the Small Magellanic Cloud, a dwarf galaxy that is a satellite galaxy to the Milky Way.

The star-forming region of the Small Magellanic Cloud (SMC) was previously imaged by the Hubble Space Telescope in 2005, but this new image gives a different view as it is taken in the infrared wavelength by Webb instead of the optical light wavelength used by Hubble.

This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. This image includes 7.7-micron light shown in blue, 10 microns in cyan, 11.3 microns in green, 15 microns in yellow, and 21 microns in red (770W, 1000W, 1130W, 1500W, and 2100W filters, respectively).
This new infrared image of NGC 346 taken by NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emissions from cool gas and dust. In this image, blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. Image: NASA, ESA, CSA, STScI, Nolan Habel (NASA-JPL); Image Processing: Patrick Kavanagh (Maynooth University)

This image was taken using the Mid-Infrared Instrument (MIRI), Webb’s instrument that operates in the mid-infrared range. Unlike the other three instruments, which operate in the near-infrared, MIRI is particularly suited to highlighting dust and the intricate structures that it forms. The colors here represent different processes, as red shows the warm dust that is heated by bright nearby stars, while the blue regions represent areas dominated by molecules called polycyclic aromatic hydrocarbons.

Recommended Videos

You can see the contrast in how objects look at different wavelengths by comparing this image taken with MIRI to a previous James Webb image of the same region taken with its NIRCam instrument.

NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light years away. Webb reveals the presence of many more building blocks than previously expected, not only for stars, but also planets, in the form of clouds packed with dust and hydrogen. 
NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light-years away. SCIENCE: NASA, ESA, CSA, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) IMAGE PROCESSING: Alyssa Pagan (STScI), Nolan Habel (USRA), Laura Lenkić (USRA), Laurie E. U. Chu (NASA Ames)

This image focuses on the near-infrared, which is ideal for highlighting the presence of stars and the arcs of gas in the region, which is primarily hydrogen.

Please enable Javascript to view this content

“By combining Webb data in both the near-infrared and mid-infrared, astronomers are able to take a fuller census of the stars and protostars within this dynamic region,” Webb scientists explain. “The results have implications for our understanding of galaxies that existed billions of years ago, during an era in the universe known as ‘cosmic noon,’ when star formation was at its peak and heavy element concentrations were lower, as seen in the SMC.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Stunning images of nearby galaxies from the VLT Survey Telescope
Image of the irregular dwarf galaxy Sextans A, located at a distance of about 4 million light years from us, towards the edge of the Local Group, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile.

A gorgeous new set of images shows the striking sight of nearby galaxies, captured by a telescope called the VLT Survey Telescope (VST), located at the European Southern Observatory (ESO)'s Paranal Observatory in Chile. Some of these galaxies are well-known, like the famous Sextans A, which is a small dwarf galaxy with an unusual square shape that is located just 4 million light years away.

Sextans A, shown above, is just a fraction of the size of our Milky Way galaxy at only 5,000 light years across and has been shaped by epic supernova events as stars come to the end of their lives and explode, pushing the material of the galaxy into its odd configuration.

Read more
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more
Hubble captures image of a spectacular ‘stellar volcano’
Evolution of R Aquarii

A gorgeous image from the Hubble Space Telescope shows a nearby star called R Aquarii that is the site of dramatic activity: violent eruptions of matter that is thrown out into the space around it. Informally dubbed as a "stellar volcano" for the way it is throwing out matter like lava spewing from deep underground, the star makes for a stunning image, but it also holds an unexpected surprise. The star is not one single object, but two.

Known as a symbiotic variable star, it consists of a red giant and a white dwarf that orbit each other in an ongoing dance. The red giant pulses, with its temperature and brightness changing over a 390-day period. This intersects with the 44-year orbital period of the white dwarf. When the white dwarf starts to close in on the red giant, it sucks off some of its gas via gravity and builds up the disk around it until this collapses and explodes, throwing off jets of material. Then the cycle begins again.

Read more