Skip to main content

James Webb photographs two potential exoplanets orbiting white dwarfs

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it’s a rare thing that any telescope can take an image of one of these planets. That’s because they are so small and dim compared to the stars that they orbit around that it’s easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star. NASA/JPL-Caltech

White dwarfs are the cores that remain after a star, like our sun, comes to the end of its life. In around 5 billion years’ time, our sun will puff up to a much larger size, growing to 200 times its previous radius and engulfing Mercury, Venus, and maybe even Earth before collapsing down to a cool core. In around six billion years’ time all that will remain is this dense core, giving off only residual heat.

Recommended Videos

Because of the violence of this puffing up and collapsing process, the environments around white dwarfs aren’t very hospitable places for planets. Only a few planet-like objects have been discovered orbiting white dwarfs, though researchers looking at the amount of metal found in white dwarfs suggest that planets may be able to survive the red dwarf phase.

These planets would be tricky to detect because of the dim light given off by white dwarfs, so there could be many of these planets out there, but they are hard for us to spot.

Researchers using James Webb, however, have evidence of what appears to be two giant exoplanets orbiting white dwarfs. They took direct images using Webb’s MIRI instrument, which was sensitive enough to see what appear to be planets even though it doesn’t have a coronagraph — a special type of shade used to block out light from a star.

“The sensitivity and resolution of MIRI along with the light-gathering power of JWST have made it possible to image previously unseen middle-aged giant planets orbiting nearby stars, all without a coronagraph,” the authors wrote in their paper describing the research.

The two white dwarfs and their candidate planets. The object in the upper-left corner of the top row of images is a galaxy.
The two white dwarfs and their candidate planets. The object in the upper-left corner of the top row of images is a galaxy. Mullally et al. 2024

These potential exoplanets are particularly interesting as they give a preview of what could happen to the giant planets in our solar system, like Jupiter and Saturn, in billions of years’ time.”These candidates would represent the oldest directly imaged planets outside our own solar system, and in many ways are more like the planets in our outer solar system than ever discovered before,” the authors write.

The research is published in The Astrophysical Journal Letters.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more
Four exoplanets discovered orbiting our cosmic neighbor, Barnard’s Star
Artist’s Illustration of Exoplanets Orbiting Barnard’s Star

These days, researchers commonly discover exoplanets, or planets outside our solar system. But sometimes there's a special discovery, like an exoplanet right in our backyard -- and that's the case with a recent finding showing that our nearest stellar neighbor, Barnard's Star, hosts up to four exoplanets.

It's most common for scientists to discover planets which are large and which orbit close to their bright stars, because these are most visible using exoplanet detection methods. But Barnard's Star is different -- it's a common type of cool, low-mass planet called a red dwarf. Red dwarfs are very numerous in our galaxy, so scientists are interested in the kinds of planets that they can host as they could be a good location to look for evidence of life.

Read more