Skip to main content

James Webb photographs two potential exoplanets orbiting white dwarfs

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it’s a rare thing that any telescope can take an image of one of these planets. That’s because they are so small and dim compared to the stars that they orbit around that it’s easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star. NASA/JPL-Caltech

White dwarfs are the cores that remain after a star, like our sun, comes to the end of its life. In around 5 billion years’ time, our sun will puff up to a much larger size, growing to 200 times its previous radius and engulfing Mercury, Venus, and maybe even Earth before collapsing down to a cool core. In around six billion years’ time all that will remain is this dense core, giving off only residual heat.

Recommended Videos

Because of the violence of this puffing up and collapsing process, the environments around white dwarfs aren’t very hospitable places for planets. Only a few planet-like objects have been discovered orbiting white dwarfs, though researchers looking at the amount of metal found in white dwarfs suggest that planets may be able to survive the red dwarf phase.

These planets would be tricky to detect because of the dim light given off by white dwarfs, so there could be many of these planets out there, but they are hard for us to spot.

Researchers using James Webb, however, have evidence of what appears to be two giant exoplanets orbiting white dwarfs. They took direct images using Webb’s MIRI instrument, which was sensitive enough to see what appear to be planets even though it doesn’t have a coronagraph — a special type of shade used to block out light from a star.

“The sensitivity and resolution of MIRI along with the light-gathering power of JWST have made it possible to image previously unseen middle-aged giant planets orbiting nearby stars, all without a coronagraph,” the authors wrote in their paper describing the research.

The two white dwarfs and their candidate planets. The object in the upper-left corner of the top row of images is a galaxy.
The two white dwarfs and their candidate planets. The object in the upper-left corner of the top row of images is a galaxy. Mullally et al. 2024

These potential exoplanets are particularly interesting as they give a preview of what could happen to the giant planets in our solar system, like Jupiter and Saturn, in billions of years’ time.”These candidates would represent the oldest directly imaged planets outside our own solar system, and in many ways are more like the planets in our outer solar system than ever discovered before,” the authors write.

The research is published in The Astrophysical Journal Letters.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
This extreme exoplanet has a highly unusual orbit
This artist’s impression shows a Jupiter-like exoplanet that is on its way to becoming a hot Jupiter — a large, Jupiter-like exoplanet that orbits very close to its star. Using the WIYN 3.5-meter telescope at the U.S. National Science Foundation Kitt Peak National Observatory, a Program of NSF NOIRLab, a team of astronomers found that this exoplanet, named TIC 241249530 b, follows an extremely elliptical orbit in the direction opposite to the rotation of its host star.

This artist’s impression shows a Jupiter-like exoplanet that is on its way to becoming a hot Jupiter — a large, Jupiter-like exoplanet that orbits very close to its star. NOIRLab/NSF/AURA/J. da Silva (Spaceengine)

Exoplanets come in all sorts of shapes and sizes, and can be weird in all sorts of ways. There are football shaped exoplanets and exoplanets where it rains gemstones; ones with the density of cotton candy and ones with one lava hemisphere. But new research has uncovered an exoplanet called TIC 241249530 b which is unusual in a different sort of way, as it has one of the most extreme orbits discovered to date.

Read more