Skip to main content

James Webb is explaining the puzzle of some of the earliest galaxies

This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope. NASA, ESA, CSA, Steve Finkelstein (UT Austin)

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope’s instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn’t a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered “universe breaking.” Now, though, new research suggests that the universe isn’t broken — it’s just that there were early black holes playing tricks.

In the blackness of space, a bright object in the center of view is surrounded and partly obscured by a dark cloudArtist illustration of a black hole surrounded by extremely thick clouds of gas and dust
Artist illustration of a black hole surrounded by extremely thick clouds of gas and dust NASA/JPL-Caltech

The reason bright galaxies were surprising was that the obvious explanation would we that there were more stars, or brighter stars, in each galaxy. But stars can only appear and grow so fast, depending on the amount of matter around them. Trying to explain how galaxies could have grown to gargantuan proportions was difficult. Now, it seems that some of this extra brightness was caused by black holes, which gobble up nearby material. As they feed, that nearby material heats up and glows, giving off light that makes the galaxies brighter.

Recommended Videos

According to a new paper in The Astronomical Journal, this explains some — but not all — of that extra brightness. “We are still seeing more galaxies than predicted, although none of them are so massive that they ‘break’ the universe,” explained lead researcher Katherine Chworowsky of the University of Texas at Austin.

The research used data from the James Webb CEERS Survey, which identified some of these earliest galaxies. When researchers removed galaxies that were very red and compact from the analysis, based on the fact the redness could indicate black holes at work, the galaxies that are left behind fit more into what was expected.

“So, the bottom line is there is no crisis in terms of the standard model of cosmology,” said Steven Finkelstein, leader of CEERS. “Any time you have a theory that has stood the test of time for so long, you have to have overwhelming evidence to really throw it out. And that’s simply not the case.”

It isn’t a matter of case closed though. Even though the remaining galaxies aren’t wildly bright any more, they are still much more numerous than expected. There are roughly twice as many massive galaxies found as had been predicted. That does still suggest that early stars were forming faster than they do today, for reasons we don’t understand yet.

“And so there is still that sense of intrigue,” Chworowsky said. “Not everything is fully understood. That’s what makes doing this kind of science fun, because it’d be a terribly boring field if one paper figured everything out, or there were no more questions to answer.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more