Skip to main content

James Webb spots ‘universe-breaking’ massive early galaxies

The James Webb Space Telescope continues to throw up surprises, and recently it has been used to spot some very old galaxies which have astonished astronomers. The galaxy candidates are far more massive than anyone expected would be possible, challenging assumptions about the early universe.

An international team of astronomers spotted six potential galaxies in a region of space close to the Big Dipper constellation from just 500 to 700 million years after the Big Bang, when the universe was still in its infancy. “These objects are way more massive​ than anyone expected,” said one of the researchers, Joel Leja of Penn State. “We expected only to find tiny, young, baby galaxies at this point in time, but we’ve discovered galaxies as mature as our own in what was previously understood to be the dawn of the universe.”

Related Videos
Images of six candidate massive galaxies, seen 500-700 million years after the Big Bang. One of the sources (bottom left) could contain as many stars as our present-day Milky Way, according to researchers, but it is 30 times more compact.
Images of six candidate massive galaxies, seen 500-700 million years after the Big Bang. One of the sources (bottom left) could contain as many stars as our present-day Milky Way, according to researchers, but it is 30 times more compact. NASA, ESA, CSA, I. Labbe (Swinburne University of Technology). Image processing: G. Brammer (Niels Bohr Institute’s Cosmic Dawn Center at the University of Copenhagen)

The galaxies appear to contain almost as many stars as our modern-day Milky Way but are much more compact. The researchers stress that they need more data to confirm whether these galaxies definitely are as old as they seem, but if so they could have a profound impact on the way we understand the early universe.

“It’s bananas,” said Erica Nelson of CU Boulder, another of the researchers. “You just don’t expect the early universe to be able to organize itself that quickly. These galaxies should not have had time to form.”

It’s possible that some of the objects could turn out to be supermassive black holes or quasars, but the researchers think they are more likely to be galaxies. “If even one of these galaxies is real, it will push against the limits of our understanding of cosmology,” Nelson said.

The issue is that current models of cosmology posit that early galaxies should be very small, only growing larger over a long period of time.

“We looked into the very early universe for the first time and had no idea what we were going to find,” Leja said. “It turns out we found something so unexpected it actually creates problems for science. It calls the whole picture of early galaxy formation into question.”

The research is published in the journal Nature.

Editors' Recommendations

Water was present in our solar system before the sun formed
This artist’s impression shows the planet-forming disc around the star V883 Orionis. In the outermost part of the disc water is frozen out as ice and therefore can’t be easily detected. An outburst of energy from the star heats the inner disc to a temperature where water is gaseous, enabling astronomers to detect it. The inset image shows the two kinds of water molecules studied in this disc: normal water, with one oxygen atom and two hydrogen atoms, and a heavier version where one hydrogen atom is replaced with deuterium, a heavy isotope of hydrogen.

You might assume that there has always been water on Earth -- that water was there from the very beginning when our planet formed. But scientists increasingly think that water on Earth may have originated elsewhere, and been carried here by comets. However, the water in the comets had to come from somewhere, and astronomers recently made a discovery which could shed light on how that water was found in the solar system.

The researchers used the Atacama Large Millimeter/submillimeter Array (ALMA), a radio telescope array in Chile, to study a planet-forming disc around the star V883 Orionis, looking for water there to see how it would be transported as the disk evolves into planets.

Read more
Hubble captures a messy irregular galaxy which hosted a supernova
The irregular spiral galaxy NGC 5486 hangs against a background of dim, distant galaxies in this image from the NASA/ESA Hubble Space Telescope. The tenuous disk of the galaxy is threaded through with pink wisps of star formation, which stand out from the diffuse glow of the galaxy’s bright core.

This week's image from the Hubble Space Telescope shows a dramatic spiral galaxy called NGC 5486, which is shot through with wisps of pink showing regions where new stars are being born.

Located 110 million light-years away in the famous constellation of Ursa Major, this galaxy is a type called an irregular spiral galaxy because its arms are wandering and indistinct. If you compare the image of this galaxy to one of a quintessential spiral galaxy like NGC 2336, you'll see that a non-irregular spiral galaxy has clearly defined arms that reach out from its center and are symmetrical.

Read more
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more