Skip to main content

James Webb snaps a colorful image of a star in the process of forming

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb’s instruments: a previous version that was taken in the near-infrared with Webb’s NIRCam camera, and new data in the mid-infrared taken with Webb’s MIRI instrument.

Recommended Videos

Looking in the infrared portion of the electromagnetic spectrum allows researchers to see through clouds of dust that would be opaque in the visible light range, showing the interior structures of clouds like this one — named L1527. This image shows interior structures called filaments that are formed of compounds called polycyclic aromatic hydrocarbons (PAHs) and which are used to track star formation. In the glowing red center of the image is the hot gas and dust around the protostar, from which it is feeding to grow larger.

The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope.
The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope’s NIRCam instrument. NASA, ESA, CSA, and STScI, J. DePasquale (STScI)

The NIRCam image looks very different because this wavelength shows mostly light that is reflected off the dust, while this new MIRI image shows the thickest pockets of dust. The MIRI image shows an area in white that is hard to see in the NIRCam image, which is a mixture of PAHs, ionized gas, and other material.

“The combination of analyses from both the near-infrared and mid-infrared views reveal the overall behavior of this system, including how the central protostar is affecting the surrounding region,” Webb scientists explain. “Other stars in Taurus, the star-forming region where L1527 resides, are forming just like this, which could lead to other molecular clouds being disrupted and either preventing new stars from forming or catalyzing their development.”

This beautiful sight won’t be around forever, though. Over time the protostar will continue to consume more material and push away the remnants of the molecular cloud it resides in. Then it will become a true star and will become visible in the visible light wavelength as well.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble is turning 35: Here are its best images from the last year
This new image showcases NGC 346, a dazzling young star cluster in the Small Magellanic Cloud.

This month sees a very special birthday: the 35th anniversary of the Hubble Space Telescope. The venerable old space telescope was launched on April 24, 1990, so now is the perfect time to celebrate this beloved instrument and the contributions it continues to make to science and our understanding of space.

Even though newer telescopes like the James Webb Space Telescope are more powerful than Hubble, it still fulfills an important role as an optical space telescope -- meaning that it looks primarily in the same wavelengths that the human eye can see. Webb looks in the infrared portion of the spectrum, so by working together the two telescopes can get a fuller view of an object than either could get on their own.

Read more
James Webb dives into the heart of the Milky Way to study star formation
An image of the Milky Way captured by the MeerKAT radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. The MeerKAT image spans 1,000 light-years, while the Webb image covers 44 light-years.

Deep in the heart of the Milky Way lies a bustling region near to the galaxy's supermassive black hole, where stars are born. But something strange is happening there: the rate of star formation is lower than it seems like it should be. With thick clouds of dust and gas, the Sagittarius C region should be bursting with new baby stars, but instead there are relatively few new stars formed there. And now, research using the James Webb Space Telescope is revealing why.

Webb first observed the region called Sagittarius C in 2023. Now researchers are now using those observations to study star formation in the wider area around the center of the Milky Way, known as the Central Molecular Zone.

Read more
James Webb captures a rare astronomical ring in the sky
This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month features a rare cosmic phenomenon called an Einstein ring. What at first appears to be a single, strangely shaped galaxy is actually two galaxies that are separated by a large distance. The closer foreground galaxy sits at the center of the image, while the more distant background galaxy appears to be wrapped around the closer galaxy, forming a ring.

A striking new image from the James Webb Space Telescope shows a rare object called an Einstein ring. This shows what appears to be a ring-shaped object in the sky, but is actually created by two separate galaxies and the epic forces of gravity.

There's a useful astronomical phenomenon called gravitational lensing, in which a large object like a galaxy or a cluster of galaxies has so much mass that it actually bends spacetime. If a massive object sits in front of a more distant object, as seen from Earth, the massive object can act like a magnifying glass, letting us see the very distant object in more detail than would normally be possible. This is a relatively common finding in astronomical images, and is one way that scientists are able to study extremely distant galaxies.

Read more