Skip to main content

See a new star being born in stunning James Webb image

The James Webb Space Telescope has captured a stunning image of the birth of a new star. As dust and gas clump together and eventually collapses under the force of gravity, it becomes a protostar: the core of a new star, rotating and forming a magnetic field, throwing off material in two dramatic jets of gas.

This process is on display in this image of the cloud L1527, taken using Webb’s NIRCam instrument. Looking in the infrared, this camera can capture the clouds of material given off by the protostar which would be invisible to the human eye.

The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope.
The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope, is embedded within a cloud of material that is feeding its growth. Material ejected from the star has cleared out cavities above and below it, whose boundaries glow orange and blue in this infrared view. The upper central region displays bubble-like shapes due to stellar ‘burps,’ or sporadic ejections. Webb also detects filaments made of molecular hydrogen that has been shocked by past stellar ejections. Intriguingly, the edges of the cavities at the upper left and lower right appear straight, while the boundaries at the upper right and lower left are curved. The region at the lower right appears blue, as there’s less dust between it and Webb than the orange regions above it. NASA, ESA, CSA, and STScI, J. DePasquale (STScI)

In the image, the protostar itself can’t be seen but is located right in the center of the hourglass shape. That shape is formed from clouds of dust and gas which are shaped by the jets given off by the protostar, with thinner areas of dust appearing blue and thicker areas appearing orange. In addition to the dust, there are also filaments of hydrogen gas visible, shaped by ejections from the protostar.

Researchers estimate that this protostar is around 100,000 years old, making it a baby by stellar standards. For comparison, our sun is around 4.6 billion years old and is expected to live to around 9 to 10 billion years of age. The protostar is also smaller than our sun, at between 20 to 40% of its mass, and most importantly it is not yet producing heat through fusion.

The protostar will continue gathering dust and gas and increasing in mass. As this material falls into the protostar due to gravity, it heats up because of friction. To start fusing hydrogen, the protostar needs to reach a core temperature of around 10 million degrees Kelvin. At this temperature, the gases become plasma, and hydrogen atoms start fusing together to form helium, releasing energy in the form of heat and light. This is the point at which a protostar becomes a main sequence star.

Some of the material left around the protostar could even become a planet one day. “Ultimately, this view of L1527 provides a window onto what our Sun and Solar System looked like in their infancy,” Webb scientists write.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more