Skip to main content

Two galaxies captured by Hubble are a hotbed of star formation

This week’s image from the Hubble Space Telescope shows two galaxies that are a hotbed of star formation. The pair, known together as Arp 303 or individually as IC 563 on the bottom right and IC 564 on the top left, are located 275 million light-years away. They are in the dim constellation of Sextans, named after the astronomical instrument used to measure the position of stars.

The image below was captured by two Hubble instruments during two separate observations. The two observations were combined to show both visible light data and data from the infrared part of the spectrum.

This new image from NASA’s Hubble Space Telescope looks at two spiral galaxies, collectively known as Arp 303.
This new image from NASA’s Hubble Space Telescope looks at two spiral galaxies, collectively known as Arp 303. The pair, individually called IC 563 (bottom right) and IC 564 (top left), are 275 million light-years away in the direction of the constellation Sextans. The colors red, orange, and green represent infrared wavelengths taken with WFC3, and the color blue represents ACS visible light data. NASA, ESA, K. Larson (STScI), and J. Dalcanton (University of Washington); Image Processing: G. Kober (NASA Goddard/Catholic University of America)

“The image holds data from two separate Hubble observations of Arp 303,” Hubble scientists write. “The first used Hubble’s Wide Field Camera 3 (WFC3) to study the pair’s clumpy star-forming regions in infrared light. Galaxies like IC 563 and IC 564 are very bright at infrared wavelengths and host many bright star-forming regions.

“The second used Hubble’s Advanced Camera for Surveys (ACS) to take quick looks at bright, interesting galaxies across the sky. The observations filled gaps in Hubble’s archive and looked for promising candidates that Hubble, the James Webb Space Telescope, and other telescopes could study further.”

Stars are formed from clouds of dust and gas which float around in the cold space between stars. The cold temperatures cause the clouds to become clumpy, with a small amount of dust and gas coming together to create knots. Over time, more and more material is drawn to these knots due to gravity until eventually, the densest part of the cloud collapses and the material within it warms up as the particles rub against each other. This forms the core of a star, called a protostar.

This protostar attracts more gas which falls into it and creates more heat. Eventually, when the temperature reaches high enough at thousands of degrees, the protostar starts to glow, giving off infrared radiation. It becomes a young T Tauri star, with a disk of matter around it falling into the star over time, while the star also gives off jets. After this rigorous stage of accreting and expelling material, the star evolves into a main-sequence star.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spots a massive star forming amid clouds of dust and gas
This image from the NASA/ESA Hubble Space Telescope is a relatively close star-forming region known as IRAS 16562-3959.

A stunning new image from the Hubble Space Telescope shows the birth of a new, massive star at around 30 times the mass of our sun. Nestled with a nearby star-forming region called IRAS 16562-3959, the baby star is located within our galaxy and around 5,900 light-years from Earth.

You can see the sparkle of bright stars throughout the image, with the star-forming region visible as the orange-colored clouds of dust and gas stretching diagonally across the frame. These clouds are where dust and gas clump together to form knots, gradually attracting more dust and gas, growing over time to become protostars.

Read more
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more