Skip to main content

Hubble captures the dramatic jets of a baby star

A new image from the Hubble Space Telescope shows the drama that unfolds as a new star is born. Within a swirling cloud of dust and gas, a newly formed star is giving off powerful jets that blast away material and cut through the nearby dust of the surrounding nebula to create this stunning vista.

The image shows a system called FS Tau, located 450 light-years away in a region called Taurus-Auriga. Within this region are many stellar nurseries with new stars forming, making it a favorite target for astronomers studying star formation. But this particular system stands out for the dramatic nature of its newborn star, which has formed an epic structure called a Herbig-Haro object.

FS Tau is a multi-star system made up of FS Tau A, the bright star-like object near the middle of the image, and FS Tau B (Haro 6-5B), the bright object to the far right that is partially obscured by a dark, vertical lane of dust. The young objects are surrounded by softly illuminated gas and dust of this stellar nursery. The system is only about 2.8 million years old, very young for a star system. Our Sun, by contrast, is about 4.6 billion years old.
FS Tau is a multi-star system made up of FS Tau A, the bright star-like object near the middle of the image, and FS Tau B (Haro 6-5B), the bright object to the far right that is partially obscured by a dark, vertical lane of dust. The young objects are surrounded by the softly illuminated gas and dust of this stellar nursery. The system is only about 2.8 million years old, very young for a star system. Our sun, by contrast, is about 4.6 billion years old. NASA, ESA, K. Stapelfeldt (NASA JPL), G. Kober (NASA/Catholic University of America)

A Herbig-Haro object is the structure created by jets of material coming from a young star. A star forms from clouds of dust and gas when this material clumps together to form a small knot. Over time, this knot attracts more and more material due to gravity, until it eventually collapses to form a core and becomes a protostar. As the protostar is dense, it attracts even more material due to gravity, growing over time and getting hotter as the material rubs together, creating friction. However, the star isn’t yet creating its own heat via fusion, so it isn’t yet a main sequence star like our sun.

Recommended Videos

The growing protostar can still become very hot though, with heat generated by the collapsing of the dust cloud and the gradual accretion of matter. This heat gives the protostar enough energy to shine, even though it isn’t creating its own heat and light from fusion yet. And with this energy, the protostar can eject two superfast jets of matter, each coming from the opposite direction. These jets of gas move so quickly that they collide with nearby dust and gas to create illumination — and it’s these jets that define a Herbig-Haro object.

The object FS Tau is unusual in that the protostar is giving off an asymmetrical double-sided jet, thought to be because matter is being expelled at different rates. It is also a binary system, with the Herbig-Haro object FS Tau B making up one half of a pair of stars along with FS Tau A, the bright object near the center of this image.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb observes a dying star creating a cosmic hourglass
The NASA/ESA/CSA James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as “fuzzy,” intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region.

This strange image may look like a cell dividing, or perhaps even a brain, but it's neither of those things -- it's actually a space nebula, located 1,500 light-years away. Known affectionately as the Crystal Ball Nebula or more technically as NGC 1514, the striking structure of this object was created by the drama of a dying star.

The James Webb Space Telescope captured this image, showing the nebula in more detail than ever before. The object was previously observed using a NASA telescope called the Wide-field Infrared Survey Explorer (WISE) in 2010 by researcher Mike Ressler of NASA’s Jet Propulsion Laboratory, and he had the opportunity to go back and look at the object again using the cutting-edge powers of Webb's MIRI instrument (Mid-Infrared Instrument). That showed up a set of fuzzy rings that were only visible in the infrared and some voids closer to the center of the object.

Read more
The final view from one of Hubble’s instruments is this gorgeous nebula
This NASA/ESA Hubble Space Telescope image features the planetary nebula Kohoutek 4-55.

When a star comes to the end of its life and dies, it can be an epic and destructive event, throwing out an explosion of heat and light -- but it can create stunning new forms as well. A gorgeous new image from the Hubble Space Telescope shows what can be created by the death of a star, featuring a striking object called a planetary nebula.

The name planetary nebula is confusing, as these objects don't actually have anything to do with planets. They were given that name by early astronomers, who saw round objects through their telescopes and assumed they were distant planets. In fact, they are clouds of dust and gas created by dying stars.

Read more
James Webb observes what happens when a planet is swallowed by a star
NASA’s James Webb Space Telescope’s observations of what is thought to be the first ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly decayed over time.

As planetary demises go, this one is pretty grisly: a planet falls closer and closer to its host star, getting hotter and hotter as it spirals inward, until it finally falls past the point of no return and is swallowed by the star in a tremendous flash of light. That's what happened in an event called ZTF SLRN-2020, and now the James Webb Space Telescope has been observing the aftermath to learn more about this rare event.

“Because this is such a novel event, we didn’t quite know what to expect when we decided to point this telescope in its direction,” said lead researcher Ryan Lau of NOIRLab, who used Webb's MIRI (Mid-Infrared Instrument) and NIRSpec (Near-Infrared Spectrograph) instruments to make observations. “With its high-resolution look in the infrared, we are learning valuable insights about the final fates of planetary systems, possibly including our own.”

Read more