Skip to main content

See the stunning Vela supernova remnant in exquisite detail in expansive image

A new image of the ghostly Vela supernova remnant shows off the fascinating and elaborate structure of this striking cosmic object. Taken using the Dark Energy Camera (DECam), this enormous image is 1.3 gigapixels, making it DECam’s largest image to date.

This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the U.S. National Science Foundation’s Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile. CTIO/NOIRLab/DOE/NSF/AURA Image Processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani & D. de Martin (NSF’s NOIRLab)

A supernova remnant like this is formed when a massive star runs out of fuel and comes to the end of its life. With its hydrogen depleted, the star burns through some its other elements, but the end is now in sight: soon, the heat generated from the fusion won’t be enough to balance out the force of gravity pushing in on the star, and it will collapse in on itself. The energy of this collapse is so great that matter bounces outward in a tremendous explosion, throwing off layers of gas.

The supernova that created the Vela remnant, which is located 800 light-years away, happened around 11,000 years ago. Over the thousands of years since then, the shockwave caused by the supernova explosion has traveled out and away from the dead star to create a huge remnant almost 100 light-years across, It has sculpted the dust and gas of the interstellar medium into the delicate structures illuminated in this image, which you can compare to a previous image of the same structure taken by the VLT Survey Telescope.

The core of the dead star that created this epic structure wasn’t completely destroyed in the explosion, however. It lives on as the Vela pulsar, a type of ultra-dense core called a neutron star that has a powerful magnetic field that causes it to pulse with radio, optical, X-ray, and gamma wavelengths like a lighthouse. It is located in the bottom left of the image.

The DECam data was taken using three filters on the instrument, each of which is sensitive to a different wavelength of light. The reds, yellows, and blues each represent a different filter, and were layered together to create this extremely detailed image that has a total of 35,786 x 35,881 pixels.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble investigates the gorgeous remnants of a supernova
The Cygnus Loop nebula forms a bubble-like shape that is about 120 light-years in diameter.

Some of the most dramatic events in the universe are the deaths of massive stars. When stars far larger than our sun run out of fuel and explode in huge supernovas, these events not only let out huge blasts of energy but also change the environment around them. As the shockwave from the explosion travels outward millions of miles into space and slams into clouds dust and gas, it can create elaborate and beautiful structures called supernova remnants.

One of the most famous remnants is the Cygnus Loop, a bubble-shaped object which is around 120 light-years across. Hubble imaged the remnant in 2020, and now scientists are using this Hubble data to study how these remnants change over time.

Read more
James Webb telescope captures stunning view of a famous supernova remnant
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

One of the satellite galaxies of the Milky Way, the Large Magellanic Cloud, is famous as the host of the nearest supernova to Earth in recent history. Supernova SN 1987A occurred when a massive star ran out of fuel and collapsed at the end of its life, setting off an enormous explosion that threw out a shock wave so powerful it reshaped the dust and gas around it for millions of miles in every direction.

That supernova left behind a remnant, a ring-shaped structure created as the shock wave traveled outward over time. This glowing ring has been frequently observed since the supernova was first seen in 1987. Now, the James Webb Space Telescope has provided one of the most detailed views yet of this stunning structure that was created from a destructive explosion.

Read more
See the stunning image James Webb took to celebrate its first birthday
The first anniversary image from the NASA/ESA/CSA James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disc, the makings of future planetary systems.

Today marks the one-year anniversary of the first images shared from the James Webb Space Telescope, and to celebrate this milestone NASA has shared yet another gorgeous image of space captured by Webb.

The new image shows a star system called Rho Ophiuchi; a busy region where new stars are being born amide swirls of dust and gas. Located just 390 light-years away, Webb was able to capture the region in stunning detail using its NIRCam instrument.

Read more