Skip to main content

The ghostly remnants of a dead star captured in stunning image

When a massive star runs out of fuel and comes to the end of its life, it can explode in an enormous and epic event called a supernova, which can be as bright as an entire galaxy. These explosions can obliterate anything around them, but they aren’t simply destructive — they can also create stunning structures called supernova remnants. These remnants are formed as shock waves from the explosion travel through nearby clouds of gas, sculpting them into beautiful shapes.

One such ghostly remnant has been captured by a ground-based instrument called OmegaCAM on the European Southern Observatory’s VLT Survey Telescope.  The Vela supernova remnant is located 800 light-years away and was created by the death of a star around 11,000 years ago.

This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. This detailed image consists of 554 million pixels, and is a combined mosaic image of observations taken with the 268-million-pixel OmegaCAM camera at the VLT Survey Telescope, hosted at ESO’s Paranal Observatory. OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct colour. To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.
This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. ESO/VPHAS+ team. Acknowledgement: Cambridge Astronomical Survey Unit

When the massive star died, it ejected its outer layers, which formed the filament-like structures seen in the image. The dense core that remained became a neutron star.

To capture this image, which is a mosaic and has a total of 554 million pixels, astronomers used the 268-million-pixel OmegaCAM with various filters to view different wavelengths of light.

“OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct color,” the European Southern Observatory explains. “To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.”

Editors' Recommendations