Skip to main content

The ghostly remnants of a dead star captured in stunning image

When a massive star runs out of fuel and comes to the end of its life, it can explode in an enormous and epic event called a supernova, which can be as bright as an entire galaxy. These explosions can obliterate anything around them, but they aren’t simply destructive — they can also create stunning structures called supernova remnants. These remnants are formed as shock waves from the explosion travel through nearby clouds of gas, sculpting them into beautiful shapes.

One such ghostly remnant has been captured by a ground-based instrument called OmegaCAM on the European Southern Observatory’s VLT Survey Telescope.  The Vela supernova remnant is located 800 light-years away and was created by the death of a star around 11,000 years ago.

This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. This detailed image consists of 554 million pixels, and is a combined mosaic image of observations taken with the 268-million-pixel OmegaCAM camera at the VLT Survey Telescope, hosted at ESO’s Paranal Observatory. OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct colour. To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.
This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. ESO/VPHAS+ team. Acknowledgement: Cambridge Astronomical Survey Unit

When the massive star died, it ejected its outer layers, which formed the filament-like structures seen in the image. The dense core that remained became a neutron star.

To capture this image, which is a mosaic and has a total of 554 million pixels, astronomers used the 268-million-pixel OmegaCAM with various filters to view different wavelengths of light.

“OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct color,” the European Southern Observatory explains. “To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the stunning Vela supernova remnant in exquisite detail in expansive image
This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.

A new image of the ghostly Vela supernova remnant shows off the fascinating and elaborate structure of this striking cosmic object. Taken using the Dark Energy Camera (DECam), this enormous image is 1.3 gigapixels, making it DECam's largest image to date.

This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the U.S. National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile. CTIO/NOIRLab/DOE/NSF/AURA Image Processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani & D. de Martin (NSF’s NOIRLab)

Read more
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
Astronaut captures stunning images of a snowy Grand Canyon
A snow-covered Grand Canyon seen from space.

In the final days of his six-month stint aboard the International Space Station (ISS), Danish astronaut Andreas Mogensen took some time out of his science work to snap some striking photos of a snow-covered Grand Canyon.

The images were captured from the station in recent days as it orbited Earth at an altitude of around 250 miles.

Read more