Skip to main content

The ghostly remnants of a dead star captured in stunning image

When a massive star runs out of fuel and comes to the end of its life, it can explode in an enormous and epic event called a supernova, which can be as bright as an entire galaxy. These explosions can obliterate anything around them, but they aren’t simply destructive — they can also create stunning structures called supernova remnants. These remnants are formed as shock waves from the explosion travel through nearby clouds of gas, sculpting them into beautiful shapes.

One such ghostly remnant has been captured by a ground-based instrument called OmegaCAM on the European Southern Observatory’s VLT Survey Telescope.  The Vela supernova remnant is located 800 light-years away and was created by the death of a star around 11,000 years ago.

This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. This detailed image consists of 554 million pixels, and is a combined mosaic image of observations taken with the 268-million-pixel OmegaCAM camera at the VLT Survey Telescope, hosted at ESO’s Paranal Observatory. OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct colour. To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.
This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. ESO/VPHAS+ team. Acknowledgement: Cambridge Astronomical Survey Unit

When the massive star died, it ejected its outer layers, which formed the filament-like structures seen in the image. The dense core that remained became a neutron star.

To capture this image, which is a mosaic and has a total of 554 million pixels, astronomers used the 268-million-pixel OmegaCAM with various filters to view different wavelengths of light.

“OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct color,” the European Southern Observatory explains. “To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more
James Webb captures stunning image of supernova remnant Cassiopeia A
Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.

A stunning new image from the James Webb Space Telescope shows a famous supernova remnant called Cassiopeia A, or Cas A. When a massive star comes to the end of its life and explodes in a huge outpouring of light and energy called a supernova, it leaves behind a dense core that can become a black hole or a neutron star. But that's not all that remains after a supernova: the explosion can leave its mark on nearby clouds of dust and gas that are formed into intricate structures.

The image of Cas A was taken using Webb's MIRI instrument, which looks in the mid-infrared range. Located 11,000 light-years away, Cassiopeia A is one of the brightest objects in the sky in the radio wavelength, and is also visible in the optical, infrared, and X-ray wavelengths. To see the different features picked up in different wavelengths, you can look at the slider comparison of the Webb infrared image alongside a Hubble visible light image of the same object.

Read more
James Webb captures the rarely-seen rings around Uranus
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) on 6 February 2023, reveals stunning views of the planet’s rings. The planet displays a blue hue in this representative-colour image, made by combining data from two filters (F140M, F300M) at 1.4 and 3.0 microns, shown here as blue and orange, respectively.

The James Webb Space Telescope spends much of its time peering out into distant regions of space searching for some of the earliest galaxies to exist, but it also occasionally turns its sights onto targets a little closer to home. Following up on its image of Neptune released last year, astronomers using Webb have just released a brand-new image of Uranus as you've never seen it before.

As Webb looks in the infrared wavelength, unlike telescopes like Hubble which look in the visible light spectrum, its image of Uranus picks out some features of the planet which are hard to see otherwise like its dusty rings. Uranus' rings are almost invisible in the optical wavelength, but in this new image, they stand out proudly.

Read more