Skip to main content

The ghostly remnants of a dead star captured in stunning image

When a massive star runs out of fuel and comes to the end of its life, it can explode in an enormous and epic event called a supernova, which can be as bright as an entire galaxy. These explosions can obliterate anything around them, but they aren’t simply destructive — they can also create stunning structures called supernova remnants. These remnants are formed as shock waves from the explosion travel through nearby clouds of gas, sculpting them into beautiful shapes.

One such ghostly remnant has been captured by a ground-based instrument called OmegaCAM on the European Southern Observatory’s VLT Survey Telescope.  The Vela supernova remnant is located 800 light-years away and was created by the death of a star around 11,000 years ago.

This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. This detailed image consists of 554 million pixels, and is a combined mosaic image of observations taken with the 268-million-pixel OmegaCAM camera at the VLT Survey Telescope, hosted at ESO’s Paranal Observatory. OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct colour. To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.
This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. ESO/VPHAS+ team. Acknowledgement: Cambridge Astronomical Survey Unit

When the massive star died, it ejected its outer layers, which formed the filament-like structures seen in the image. The dense core that remained became a neutron star.

To capture this image, which is a mosaic and has a total of 554 million pixels, astronomers used the 268-million-pixel OmegaCAM with various filters to view different wavelengths of light.

“OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct color,” the European Southern Observatory explains. “To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble captures an exceptionally luminous supernova site
This NASA Hubble Space Telescope image is of the small galaxy known as UGC 5189A.

This week's image from the Hubble Space Telescope shows the aftermath of an epic explosion in space caused by the death of a massive star.

Some of the most dramatic events in the cosmos are supernovas, when a massive star runs out of fuel to fuse -- first running out of hydrogen, then helium, then burning through heavier elements -- and eventually can no longer sustain the outward pressure from heat caused by this fusion. When that happens, the star collapses suddenly into a dense core, and its outer layers are thrown off in a tremendous explosion called a Type II supernova.

Read more
Four telescopes work together to create a gorgeous image of a supernova remnant
This deep dataset from Chandra of the remains of a supernova known as 30 Doradus B (30 Dor B) reveals evidence for more than one supernova explosion in the history of this remnant. Unusual structures in the Chandra data cannot be explained by a single explosion. These images of 30 Dor B also show optical data from the Blanco telescope in Chile, and infrared data from Spitzer. Additional data from Hubble highlights sharp features in the image.

A stunning new image of a supernova remnant combines data from four different telescopes to show a colorful, detailed picture of a busy region of space. The remnant 30 Doradus B (or 30 Dor B) was created when a massive star came to the end of its life and exploded, and while the explosion was only brief, it sculpted the dust and gas around the star in a way that remains visible even now, thousands of years later.

This deep dataset from Chandra of the remains of a supernova known as 30 Doradus B (30 Dor B) reveals evidence of more than one supernova explosion in the history of this remnant. Unusual structures in the Chandra data cannot be explained by a single explosion. These images of 30 Dor B also show optical data from the Blanco telescope in Chile, and infrared data from Spitzer. Additional data from Hubble highlights sharp features in the image. Credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Optical: NASA/STScI/HST; Infrared: NASA/JPL/CalTech/SST; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand

Read more
See a festive cosmic chicken captured by the VLT Survey Telescope
The Running Chicken Nebula comprises several clouds, all of which we can see in this vast image from the VLT Survey Telescope (VST), hosted at ESO’s Paranal site. This 1.5-billion pixel image spans an area in the sky of about 25 full Moons. The clouds shown in wispy pink plumes are full of gas and dust, illuminated by the young and hot stars within them.

A new image from the VLT Survey Telescope shows a beautiful region called the Running Chicken Nebula, which makes for a striking festive scene. Located 6,500 light-years away, this region is full of bright young stars that sculpt the clouds of dust and gas around them to form complex structures.

The Running Chicken Nebula comprises several clouds, all of which we can see in this vast image from the VLT Survey Telescope (VST), hosted at European Southern Observatory’s Paranal site. This 1.5-billion-pixel image spans an area in the sky of about 25 full moons. The clouds shown in wispy pink plumes are full of gas and dust, and are illuminated by the young and hot stars within them. ESO/VPHAS+ team. Acknowledgement: CASU

Read more