Skip to main content

Hubble captures the beautiful aftermath of a supernova explosion

Supernovas might spell the end for the star they happen to, but they aren’t only destructive phenomena. When a star approaches the end of its life and runs out of fuel, it explodes in an enormous outpouring of energy, leaving behind a small, dense core that becomes a black hole or a neutron star. This explosion, though destructive on an epic scale, can also leave behind a beautiful remnant created by the explosion’s shock wave.

A image recently released by the Hubble Space Telescope team shows one such supernova remnant, called DEM L249. Captured by Hubble’s Wide Field Camera 3 instrument and located in the constellation of Mensa, this delicate structure is formed from dust and gas ejected outward from the star’s location by the force of the blast.

This image from the NASA/ESA Hubble Space Telescope shows the tattered remnant of a supernova — a titanic explosion marking the end of the life of a dying star. This object — known as DEM L249 — is thought to have been created by a Type 1a supernova during the death throes of a white dwarf. While white dwarfs are usually stable, they can slowly accrue matter if they are part of a binary star system. This accretion of matter continues until the white dwarf reaches a critical mass and undergoes a catastrophic supernova explosion, ejecting a vast amount of material into space in the process.
This image from the NASA/ESA Hubble Space Telescope shows the tattered remnant of a supernova — a titanic explosion marking the end of the life of a dying star. ESA/Hubble & NASA, Y. Chu

“This object — known as DEM L249 — is thought to have been created by a Type 1a supernova during the death throes of a white dwarf,” the Hubble scientists write. “While white dwarfs are usually stable, they can slowly accrue matter if they are part of a binary star system. This accretion of matter continues until the white dwarf reaches a critical mass and undergoes a catastrophic supernova explosion, ejecting a vast amount of material into space in the process.”

This remnant is located around 160,000 light-years from Earth in a small satellite galaxy of the Milky Way called the Large Magellanic Cloud (LMC). Researchers use Hubble to look to the LMC to understand more about star evolution, as it is located relatively nearby and is not obscured by too much dust.

“The LMC is an ideal natural laboratory where astronomers can study the births, lives, and deaths of stars, as this region is nearby, oriented towards Earth, and contains relatively little light-absorbing interstellar dust,” according to the Hubble team. “The data in this image were gathered by Hubble’s Wide Field Camera 3 instrument, and were obtained during a systematic search of the LMC for the surviving companions of white dwarf stars which have gone supernova.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble images our ghostly neighborhood galaxy NGC 6684
The lenticular galaxy NGC 6684 bathes this image from the NASA/ESA Hubble Space Telescope in a pale light. Captured with Hubble’s Advanced Camera for Surveys, this galaxy is around 44 million light-years from Earth in the constellation Pavo. Pavo – the Latin name for peacock – is a constellation in the southern sky and one of four constellations collectively known as the Southern Birds.

Scientists working with the Hubble Space Telescope release an image each week that the telescope has taken recently, and this week's image shows a lenticular galaxy located 44 million light-years away. Known as NGC 6684, this galaxy in the constellation of Pavo, which can be seen from the Southern Hemisphere.

Lenticular galaxies are different from spiral galaxies such as our Milky Way. Instead of distinct spiral arms reaching out from a center, lenticular galaxies are more amorphous and diffuse, but with a central disk. This type of galaxy is halfway between a spiral galaxy and an elliptical galaxy, which is smooth and almost featureless. Lenticular galaxies don't have much interstellar matter, or dust and gas floating between stars, so there isn't much material for the creation of new stars and the rate of star formation within these galaxies is low. The lack of structure in this type of galaxy is emphasized by its absence of dust lanes, making it look even more "ghostly," as Hubble scientists dub it.

Read more
James Webb captures image of the most distant star ever discovered
A massive galaxy cluster called WHL0137-08 contains the most strongly magnified galaxy known in the universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected, nicknamed Earendel.

The James Webb Space Telescope has captured a stunning image of the most distant star ever discovered. Discovered by Hubble in 2020, the star named Earendel is located an astonishing 28 billion light-years away. While in the previous Hubble image, the star was only visible as a small blob, these new observations from Webb are detailed enough to reveal information about the star like its type and information about the galaxy in which it resides.

The Webb image shows a galaxy cluster called WHL0137-08, which is so massive that it bends spacetime and acts like a magnifying glass for the more distant galaxies behind it. Some of these distant galaxies being magnified include one called the Sunrise Arc, which hosts Earendel. The Sunrise Arc is located near the end of one of the spikes from the bright central star, at around the five o'clock position. A zoomed-in version of the image shows the Arc and Earendel within t.

Read more
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more