Skip to main content

Hubble captures a sparkling cloud galaxy located right next door

An image from the Hubble Space Telescope shared this week by NASA shows a nearby galaxy, ESO 300-16. Unlike our Milky Way, which is a type called a spiral galaxy with a clear central bulge and defined spiral arms reaching out from its center, this neighborhood galaxy is loose and diffuse, looking more like a spattering of stars than anything with a clear structure. Hubble scientists describe it as a “sparkling cloud.”

The galaxy is a type called an irregular galaxy, due to its lack of clear shape. Its stars clump together in a soft bubble form, and it is located nearly 29 million light-years away in the direction of the constellation Eridanus.

The galaxy ESO 300-16 looms over this image from the NASA/ESA Hubble Space Telescope. This galaxy, which lies 28.7 million light-years from Earth in the constellation Eridanus, is a ghostly assemblage of stars which resembles a sparkling cloud. Other distant galaxies and foreground stars complete this astronomical portrait, which was captured by the Advanced Camera for Surveys.
The galaxy ESO 300-16 looms over this image from the NASA/ESA Hubble Space Telescope. This galaxy, which lies 28.7 million light-years from Earth in the constellation Eridanus, is a ghostly assemblage of stars that resembles a sparkling cloud. Other distant galaxies and foreground stars complete this astronomical portrait, which was captured by the Advanced Camera for Surveys. ESA/Hubble & NASA, R. Tully

“This observation is one of a series which aims to get to know our galactic neighbors,” Hubble scientists explain in a statement. “Hubble has observed around three-quarters of known galaxies within about 10 megaparsecs of Earth in enough detail to resolve their brightest stars and establish distances to these galaxies. A team of astronomers proposed using small gaps in Hubble’s observing schedule to acquaint ourselves with the remaining quarter of these nearby galaxies.”

The project is called Every Known Nearby Galaxy and is designed to maximize Hubble’s observing time. Time on Hubble is in high demand, so astronomers have to submit proposals for how and why they want to use Hubble for their observations far in advance. This is a competitive process, with experts deciding what the best of use Hubble’s limited time would be and filling out the schedule as much as they can. However, there are some small gaps between observations, such as when the telescope has to move to point to different parts of the sky for different observations.

Researchers make use of this 2-3% of time on Hubble which isn’t going toward primary observations to make other smaller observations like the Every Known Nearby Galaxy project. This has resulted in a series of images of our galactic neighbors, including ghostly galaxy NGC 6684, fuzzy galaxy LEDA 48062, and dwarf galaxy UGCA 307.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble image shows a lonely star glowing over an irregular background galaxy
The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.

This week's image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

Read more
Hubble observes a cluster of boulders around impacted asteroid Dimorphos
A NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos taken on 19 December 2022.

Last year, NASA deliberately crashed a spacecraft into an asteroid, in a first-of-its-kind test of planetary defense. At the time, telescopes around the world including the Hubble Space Telescope observed the impact between the DART spacecraft and the Dimorphos asteroid, capturing footage of the plumes of dust thrown up. Now, Hubble has observed Dimorphos once again and seen that a number of boulders have been ejected from the asteroid.

The Hubble image shown below was taken on 19 December 2022, around four months after the impact, and shows the bright streak of the asteroid across the sky, surrounded by small boulders which were knocked loose during the impact. This view was only possible after several months as the impact initially sent up large amounts of dust which made it difficult to see the asteroid in detail.

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more