Skip to main content

Small exoplanet could be hot and steamy according to Hubble

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research — and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets.”

This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. NASA, ESA, Leah Hustak and Ralf Crawford (STScI)

Planet GJ 9827d is relatively small by exoplanet standards, at twice the diameter of Earth, and scientists are wondering whether the planet could have a water-rich atmosphere or whether there is just a small amount of water vapor in a puffy hydrogen-rich atmosphere. With a Venus-like temperature of 425 degrees Celsius, the planet would be hot and steamy if water-rich.

Recommended Videos

“Our observing program was designed specifically with the goal of not only detecting the molecules in the planet’s atmosphere, but of actually looking specifically for water vapor. Either result would be exciting, whether water vapor is dominant or just a tiny species in a hydrogen-dominant atmosphere,” said another of the researchers, Pierre-Alexis Roy of the Université de Montréal.

It is hard to tell whether the planet has a water-rich or hydrogen-rich atmosphere because of its small size. Although Hubble was able to take data from 11 transits — when the planet passed in front of its star and light from the star filtered through its atmosphere — this can indicate the presence of water vapor but not necessarily the amount that is present.

“Until now, we had not been able to directly detect the atmosphere of such a small planet. And we’re slowly getting into this regime now,” said Benneke. “At some point, as we study smaller planets, there must be a transition where there’s no more hydrogen on these small worlds, and they have atmospheres more like Venus (which is dominated by carbon dioxide).”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble catches a baby star pulsating in a triple star system
This NASA Hubble Space Telescope image captures a triple-star star system.

This NASA Hubble Space Telescope image shows a triple-star star system. NASA, ESA, G. Duchene (Universite de Grenoble I); Image Processing: Gladys Kober (NASA/Catholic University of America)

A gorgeous new image from the Hubble Space Telescope shows a triple star system, where three stars are working in tandem to create a reflection nebula. The trio of stars are located 550 light-years away, and include one particular star, HP Tau, that is like a younger version of our sun and will eventually grow up to be a similar hydrogen-fueled star in millions of years' time.

Read more
James Webb observes extremely hot exoplanet with 5,000 mph winds
This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. WASP-43 b is a Jupiter-sized planet circling a star roughly 280 light-years away, in the constellation Sextans. The planet orbits at a distance of about 1.3 million miles (0.014 astronomical units, or AU), completing one circuit in about 19.5 hours. Because it is so close to its star, WASP-43 b is probably tidally locked: its rotation rate and orbital period are the same, such that one side faces the star at all times.

Astronomers using the James Webb Space Telescope have modeled the weather on a distant exoplanet, revealing winds whipping around the planet at speeds of 5,000 miles per hour.

Researchers looked at exoplanet WASP-43 b, located 280 light-years away. It is a type of exoplanet called a hot Jupiter that is a similar size and mass to Jupiter, but orbits much closer to its star at just 1.3 million miles away, far closer than Mercury is to the sun. It is so close to its star that gravity holds it in place, with one side always facing the star and the other always facing out into space, so that one side (called the dayside) is burning hot and the other side (called the nightside) is much cooler. This temperature difference creates epic winds that whip around the planet's equator.

Read more
Celebrate Hubble’s 34th birthday with this gorgeous nebula image
In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. The name 'Little Dumbbell' comes from its shape that is a two-lobed structure of colorful, mottled, glowing gases resembling a balloon that’s been pinched around a middle waist. Like an inflating balloon, the lobes are expanding into space from a dying star seen as a white dot in the center. Blistering ultraviolet radiation from the super-hot star is causing the gases to glow. The red color is from nitrogen, and blue is from oxygen.

Tomorrow, April 24, marks the 34th anniversary of the launch of the Hubble Space Telescope. For more than three decades, this venerable old telescope has been peering out into space, observing stars, galaxies, and nebulae to understand more about the universe we live in. To celebrate this birthday, Hubble scientists have shared a new image showing the striking Little Dumbbell Nebula, also known as Messier 76, which is located 3,400 light-years away.

In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. NASA, ESA, STScI

Read more