Skip to main content

How James Webb peers into the atmospheres of far-off exoplanets

We are entering a new period of exoplanet astronomy, with a recent announcement that the James Webb Space Telescope has detected its first exoplanet. The promise of Webb is that it will be able to not only spot exoplanets but also study their atmospheres, which would mark a major step forward in exoplanet science.

Studying exoplanets is extremely challenging because they are generally far too far away and too small to be observed directly. Very occasionally, a telescope is able to directly image an exoplanet, but most of the time researchers have to infer that a planet is present by looking at the star around which it orbits. There are several methods for detecting planets based on their effects on a star, but one of the most commonly used is the transit method, in which a telescope observes a star and looks for a very small dip in brightness which happens when a planet passes between the star and us. This is the method Webb used to detect its first exoplanet, named LHS 475 b.

Illustration of a planet on a black background. The planet is large and rocky. Roughly two-thirds of the planet is lit, while the rest is in shadow.
Based on new evidence from the NASA/ESA/CSA James Webb Space Telescope, this illustration shows the exoplanet LHS 475 b. It is rocky and almost precisely the same size as Earth. The planet whips around its star in just two days, far faster than any planet in the Solar System. NASA, ESA, CSA, L. Hustak (STScI)

The big aim, though, is for Webb to detect exoplanet atmospheres. The researchers were able to gather some data on the newly detected planet’s atmosphere and to rule out some possibilities, but they aren’t yet able to determine the exact composition of its atmosphere. That’s because as difficult as it can be to detect an exoplanet, studying its atmosphere is even harder.

Recommended Videos

The way Webb does this is by using a method called transit spectroscopy. Like using the transit method to detect an exoplanet, studying its atmosphere also relies on the planet passing in front of its star (called a transit). When the planet is in front of the star, a small amount of light coming from the star will pass through the planet’s atmosphere. If scientists can hone in on that light and split it into different wavelengths, they can see which wavelengths are missing — indicating which wavelengths have been absorbed by something in the atmosphere. We know what chemicals absorb at which wavelengths, so this information can show what the atmosphere is composed of.

Please enable Javascript to view this content

However, trying to piece together information from a transmission spectrum is complicated as the percentage of light being blocked is so low, at around 0.1% of the star’s brightness. And bear in mind, this is a star located 41 light-years away. If you look at the transmission spectrum of the recently detected planet, shown below, you can see the data points in white.

This transmission spectrum of the rocky exoplanet LHS 475 b was captured by Webb’s NIRSpec instrument on August 31, 2022.
This transmission spectrum of the rocky exoplanet LHS 475 b was captured by Webb’s NIRSpec instrument on August 31, 2022. A transmission spectrum is made by comparing starlight filtered through a planet’s atmosphere as it moves in front of the star to the unfiltered starlight detected when the planet is beside the star. Each of the 56 data points on this graph represents the amount of light that the planet blocks from the star at a different wavelength of light. ILLUSTRATION: NASA, ESA, CSA, Leah Hustak (STScI) SCIENCE: Kevin B. Stevenson (APL), Jacob A. Lustig-Yaeger (APL), Erin M. May (APL), Guangwei Fu (JHU), Sarah E. Moran (University of Arizona)

The colored lines are possible models of what the atmosphere could be like, and the researchers look for the line with the best fit. In this case, you can see that the methane atmosphere, shown in green, clearly isn’t correct, so that’s how the researchers know the planet doesn’t have a methane atmosphere. But it could have no atmosphere (shown in yellow, labeled as featureless) or a carbon dioxide atmosphere. There isn’t enough data to say definitively, though the researchers plan to make more observations with Webb later this year which should give them more data.

Even though we can’t be sure about the atmosphere of this exoplanet yet, this research shows how Webb should be able to analyze exoplanet atmospheres someday soon. “We’re at the forefront of studying small, rocky exoplanets,” said lead researcher Jacob Lustig-Yaeger of the Johns Hopkins University Applied Physics Laboratory in a statement. “We have barely begun scratching the surface of what their atmospheres might be like.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Astronomers spot strange exoplanet with a tail 350,000 miles long
Artist's concept depicts new research that has expanded our understanding of exoplanet WASP-69 b's "tail."

Astronomers using the W. M. Keck Observatory in Hawaii have made a startling finding: a distant exoplanet with a tail hundreds of thousands of miles long. Planet WASP-69 b is located 164 light-years away, and as it orbit, it is followed by a stream of escaping gas that forms a tail -- making it look a little like a comet.

The planet is a type called a hot Jupiter, meaning it is a large gas giant that orbits very close to its star. So close, in fact, that a year there lasts less than four days and it has a blistering temperature of over 600 degrees Celsius.

Read more
James Webb spots ancient Spiderweb cluster that’s 10 billion years old
This image shows the Spiderweb protocluster as seen by Webb’s NIRCam (Near-InfraRed Camera).

A new image from the James Webb Space Telescope shows thousands of glittering galaxies that it spied by peering through clouds of dust and using its infrared instruments to reveal what lies beneath. In the center of the image is the Spiderweb protocluster, which is a group of galaxies in the early stages of forming a "cosmic city."

The light from the Spiderweb has been traveling for an astonishing 10 billion years to reach us, so looking at it is like looking back in time to the early stages of the universe. Astronomers are interested in studying this cluster of over 100 galaxies interacting together because it shows how galaxies clumped together to form groups when the universe was still young.

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more