Skip to main content

James Webb snapped a picture of an exoplanet for the first time

The James Webb Space Telescope has directly imaged an exoplanet for the first time. This is exciting because it is very rare for exoplanets to be directly imaged, as usually, their existence has to be inferred from other data. By taking an image of a planet outside our solar system, Webb demonstrates how we’ll be able to gather more information than ever before about distant worlds.

There are over 5,000 known exoplanets, but the vast majority of these have been detected using techniques like the transit method, in which the light from a host star dips slightly when a planet passes in front of it, or radial velocity, in which a star is slightly tugged around by the gravity of a planet. In these methods, the existence of a planet is inferred because of the effect that can be observed on a star, so the planet itself isn’t directly observed. In rare cases, however, an exoplanet can be observed directly, particularly if it is a large planet located relatively nearby.

This image shows the exoplanet HIP 65426 b in different bands of infrared light.
This image shows the exoplanet HIP 65426 b in different bands of infrared light, as seen from the James Webb Space Telescope: purple shows the NIRCam instrument’s view at 3.00 micrometers, blue shows the NIRCam instrument’s view at 4.44 micrometers, yellow shows the MIRI instrument’s view at 11.4 micrometers, and red shows the MIRI instrument’s view at 15.5 micrometers. These images look different because of the ways the different Webb instruments capture light. NASA/ESA/CSA, A Carter (UCSC), the ERS 1386 team, and A. Pagan (STScI)

Webb made one such direct observation of the exoplanet HIP 65426 b, and was able to capture an image of the planet using four different filters. Each of these filters corresponds to a different wavelength of light, capturing different features of the planet and its environment. The planet is a big one at between six and 12 times the mass of Jupiter, and it is a relative youngster at just 15 to 20 million years old.

Recommended Videos

“This is a transformative moment, not only for Webb but also for astronomy generally,” said leader of the observations Sasha Hinkley in a statement.

To observe the planet, the researchers needed to block out the light coming from the planet’s host star. As the star is so much brighter than the planet, this light has to be blocked to make it possible to see the planet. This is done with an instrument called a coronagraph, which is a mask that blocks light from a bright source.

“It was really impressive how well the Webb coronagraphs worked to suppress the light of the host star,” Hinkley said.

“Obtaining this image felt like digging for space treasure,” said another of the researchers, Aarynn Carter. “At first all I could see was light from the star, but with careful image processing I was able to remove that light and uncover the planet.”

This finding demonstrates some of Webb’s abilities when it comes to finding and investigating exoplanets. “I think what’s most exciting is that we’ve only just begun,” Carter said. “There are many more images of exoplanets to come that will shape our overall understanding of their physics, chemistry, and formation. We may even discover previously unknown planets, too.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
SpaceX’s Crew Dragon to splash down in Pacific for first time — how to watch
Crew Dragon Endeavour shortly before splashdown.

SpaceX is making final preparations to bring home the Fram2 crew, which launched to orbit in a private mission on Monday.

The Crew Dragon and its four crewmembers will splash down off the coast of California on Friday, marking the first Crew Dragon mission to land in the Pacific Ocean

Read more
James Webb captures a rare astronomical ring in the sky
This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month features a rare cosmic phenomenon called an Einstein ring. What at first appears to be a single, strangely shaped galaxy is actually two galaxies that are separated by a large distance. The closer foreground galaxy sits at the center of the image, while the more distant background galaxy appears to be wrapped around the closer galaxy, forming a ring.

A striking new image from the James Webb Space Telescope shows a rare object called an Einstein ring. This shows what appears to be a ring-shaped object in the sky, but is actually created by two separate galaxies and the epic forces of gravity.

There's a useful astronomical phenomenon called gravitational lensing, in which a large object like a galaxy or a cluster of galaxies has so much mass that it actually bends spacetime. If a massive object sits in front of a more distant object, as seen from Earth, the massive object can act like a magnifying glass, letting us see the very distant object in more detail than would normally be possible. This is a relatively common finding in astronomical images, and is one way that scientists are able to study extremely distant galaxies.

Read more
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more