Skip to main content

James Webb snapped a picture of an exoplanet for the first time

The James Webb Space Telescope has directly imaged an exoplanet for the first time. This is exciting because it is very rare for exoplanets to be directly imaged, as usually, their existence has to be inferred from other data. By taking an image of a planet outside our solar system, Webb demonstrates how we’ll be able to gather more information than ever before about distant worlds.

There are over 5,000 known exoplanets, but the vast majority of these have been detected using techniques like the transit method, in which the light from a host star dips slightly when a planet passes in front of it, or radial velocity, in which a star is slightly tugged around by the gravity of a planet. In these methods, the existence of a planet is inferred because of the effect that can be observed on a star, so the planet itself isn’t directly observed. In rare cases, however, an exoplanet can be observed directly, particularly if it is a large planet located relatively nearby.

This image shows the exoplanet HIP 65426 b in different bands of infrared light.
This image shows the exoplanet HIP 65426 b in different bands of infrared light, as seen from the James Webb Space Telescope: purple shows the NIRCam instrument’s view at 3.00 micrometers, blue shows the NIRCam instrument’s view at 4.44 micrometers, yellow shows the MIRI instrument’s view at 11.4 micrometers, and red shows the MIRI instrument’s view at 15.5 micrometers. These images look different because of the ways the different Webb instruments capture light. NASA/ESA/CSA, A Carter (UCSC), the ERS 1386 team, and A. Pagan (STScI)

Webb made one such direct observation of the exoplanet HIP 65426 b, and was able to capture an image of the planet using four different filters. Each of these filters corresponds to a different wavelength of light, capturing different features of the planet and its environment. The planet is a big one at between six and 12 times the mass of Jupiter, and it is a relative youngster at just 15 to 20 million years old.

“This is a transformative moment, not only for Webb but also for astronomy generally,” said leader of the observations Sasha Hinkley in a statement.

To observe the planet, the researchers needed to block out the light coming from the planet’s host star. As the star is so much brighter than the planet, this light has to be blocked to make it possible to see the planet. This is done with an instrument called a coronagraph, which is a mask that blocks light from a bright source.

“It was really impressive how well the Webb coronagraphs worked to suppress the light of the host star,” Hinkley said.

“Obtaining this image felt like digging for space treasure,” said another of the researchers, Aarynn Carter. “At first all I could see was light from the star, but with careful image processing I was able to remove that light and uncover the planet.”

This finding demonstrates some of Webb’s abilities when it comes to finding and investigating exoplanets. “I think what’s most exciting is that we’ve only just begun,” Carter said. “There are many more images of exoplanets to come that will shape our overall understanding of their physics, chemistry, and formation. We may even discover previously unknown planets, too.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
How to watch SpaceX launch Cygnus cargo ship to ISS for first time
A SpaceX Falcon 9 rocket launching from Cape Canaveral.

SpaceX is about to launch Northrop Grumman’s Cygnus cargo ship to the International Space Station (ISS) for the first time, and you can watch the event live online.

The 20th Commercial Resupply Services (NG-20) mission is set to get underway from the Kennedy Space Center in Florida on Tuesday, January 30. Scroll down for full details on how to watch.

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more