Skip to main content

Hubble observes a giant planet growing as it gobbles up dust and gas

This illustration of the newly forming exoplanet PDS 70b shows how material may be falling onto the giant world as it builds up mass. By employing Hubble’s ultraviolet light (UV) sensitivity, researchers got a unique look at radiation from extremely hot gas falling onto the planet, allowing them to directly measure the planet’s mass growth rate for the first time.
This illustration of the newly forming exoplanet PDS 70b shows how material may be falling onto the giant world as it builds up mass. By employing Hubble’s ultraviolet light (UV) sensitivity, researchers got a unique look at radiation from extremely hot gas falling onto the planet, allowing them to directly measure the planet’s mass growth rate for the first time. SCIENCE: McDonald Observatory–University of Texas, Yifan Zhou (UT) ILLUSTRATION: NASA, ESA, STScI, Joseph Olmsted (STScI)

Planets come in many compositions and sizes, and they can grow considerably larger than even the gas giants in our solar system. One such giant planet, PDS 70b, is two to three times the radius of Jupiter, and around three times its mass as well. Now, Hubble has made a rare direct observation of this planet to learn about how such large planets grow.

Recommended Videos

The planet’s host star, orange dwarf PDS 70, is located 370 light-years away in the constellation of Centaurus, and this is one of the relatively few systems in which a planet has been directly imaged. Most of the time, exoplanets are detected by seeing how light coming from their host star changes, from which the presence of planets can be inferred. But occasionally, a planet is big enough to be seen directly, like the chunky PDS 70b.

Not only could Hubble observe the planet, but it could also see how fast it grows by observing radiation from hot gas which is falling toward it. The planet is moving through a cloud of dust and gas around the star, and it gathers up material as it travels. The researchers believe that although the planet is still growing, it will soon come to the end of its growth phase.

“We just don’t know very much about how giant planets grow,” said one of the researchers, Brendan Bowler of the University of Texas at Austin, in a statement. “This planetary system gives us the first opportunity to witness material falling onto a planet. Our results open up a new area for this research.”

“This system is so exciting because we can witness the formation of a planet,” said another researcher, Yifan Zhou, also of the University of Texas at Austin. “This is the youngest bona fide planet Hubble has ever directly imaged.”

Learning about how this planet is growing can also teach us about how planets like Jupiter formed in our solar system. It too may have grown by scooping up material from a disk of dust and gas.

“Thirty-one years after launch, we’re still finding new ways to use Hubble,” Bowler said. “Yifan’s observing strategy and post-processing technique will open new windows into studying similar systems, or even the same system, repeatedly with Hubble. With future observations, we could potentially discover when the majority of the gas and dust falls onto their planets and if it does so at a constant rate.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble captures image of a spectacular ‘stellar volcano’
Evolution of R Aquarii

A gorgeous image from the Hubble Space Telescope shows a nearby star called R Aquarii that is the site of dramatic activity: violent eruptions of matter that is thrown out into the space around it. Informally dubbed as a "stellar volcano" for the way it is throwing out matter like lava spewing from deep underground, the star makes for a stunning image, but it also holds an unexpected surprise. The star is not one single object, but two.

Known as a symbiotic variable star, it consists of a red giant and a white dwarf that orbit each other in an ongoing dance. The red giant pulses, with its temperature and brightness changing over a 390-day period. This intersects with the 44-year orbital period of the white dwarf. When the white dwarf starts to close in on the red giant, it sucks off some of its gas via gravity and builds up the disk around it until this collapses and explodes, throwing off jets of material. Then the cycle begins again.

Read more
Hubble images a pair of tiny dwarf galaxies
hubble dwarf galaxy pair ic3430 potw2431a 1

A new image from the Hubble Space Telescope shows a small dwarf galaxy called IC 3430 that's located 45 million light-years away. This galaxy is classified as both a dwarf galaxy, because of its small size, and an elliptical galaxy, because of its form.

Elliptical galaxies are smooth and featureless, appearing blob-like and diffuse, unlike spiral galaxies, like our Milky Way, which have a distinct structure of a central hub and stretching spiral arms.

Read more
Hubble finds mysterious and elusive black hole
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole.

An international team of astronomers has used more than 500 images from the NASA/European Space Agency (ESA) Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence of the presence of an intermediate-mass black hole. ESA/Hubble & NASA, M. Häberle (MPIA)

There's something strange about black holes. Astronomers often find small black holes, which are between five times and 100 times the mass of the sun. And they often find huge supermassive black holes, which are hundreds of thousands of times the mass of the sun or even larger. But they almost never find black holes in between those two sizes.

Read more