Skip to main content

First indications of a rare, rainbow ‘glory effect’ on hellish exoplanet

Just from looking at our own solar system, we can see that planets come in a wide variety of colors — from the dusty red of Mars to the bright blues of Uranus and Neptune. Planets like Jupiter have beautiful bands of color caused by variations in the atmosphere, while it’s hard to even see the surface of Venus because its atmosphere is so thick. But there are other variations in color which planets can display, like a stunning rainbow-hued set of circular rings called a glory.

Glories are observed on Earth, and have been seen just once on another planet, Venus. But now, researchers believe they may have identified a glory on a planet outside our solar system for the first time. The extreme exoplanet WASP-76b could be host to the first known extrasolar glory, observed by the European Space Agency (ESA)’s Characterising ExOplanet Satellite (Cheops).

For the first time, potential signs of the rainbow-like ‘glory effect’ have been detected on a planet outside our Solar System. Glory are colourful concentric rings of light that occur only under peculiar conditions. Data from ESA’s sensitive Characterising ExOplanet Satellite, Cheops, along with several other ESA and NASA missions, suggest this delicate phenomenon is beaming straight at Earth from the hellish atmosphere of ultra-hot gas giant WASP-76b, 637 light-years away.
For the first time, potential signs of the rainbow-like ‘glory effect’ have been detected on a planet outside our Solar System. Glory are colorful concentric rings of light that occur only under peculiar conditions. Data from ESA’s sensitive Characterising ExOplanet Satellite, Cheops, along with several other ESA and NASA missions, suggest this delicate phenomenon is beaming straight at Earth from the hellish atmosphere of ultra-hot gas giant WASP-76b, 637 light-years away. ESA. Work performed by ATG under contract for ESA

“There’s a reason no glory has been seen before outside our Solar System – it requires very peculiar conditions,” said lead author of the research, Olivier Demangeon of the Instituto de Astrofísica e Ciências do Espaço in a statement. “First, you need atmospheric particles that are close-to-perfectly spherical, completely uniform and stable enough to be observed over a long time. The planet’s nearby star needs to shine directly at it, with the observer – here Cheops – at just the right orientation.”

Recommended Videos

The glory effect occurs when light bounces off clouds in a planet’s atmosphere, though it’s not clear what substance the clouds could be composed of for this to happen. The clouds would need to have spherical droplets and to be stable over time.

WASP-76b is already famous as an extreme exoplanet, with an atmosphere heated to a scorching 2,000 degrees Celsius, which is so hot it rains iron there. The planet is tidally locked, meaning one side of it always faces its star and one side always faces out into space, causing a massive temperature difference between these two sides. It is also puffed up to a huge size given its mass.

Even though the planet is well studied, it’s still very hard to see details of what is happening there, as it is located over 600 light-years away. Researchers warn that it’s hard to be certain that what is being seen is truly a glory effect.

“What’s important to keep in mind is the incredible scale of what we’re witnessing,” said Matthew Standing, an ESA Research Fellow studying exoplanets. “WASP-76b is several hundred light-years away – an intensely hot gas giant planet where it likely rains molten iron. Despite the chaos, it looks like we’ve detected the potential signs of a glory. It’s an incredibly faint signal.”

The indications have exoplanet scientists intrigued, however, as they could help to shed light on this planet’s dramatic atmosphere. “Further proof is needed to say conclusively that this intriguing ‘extra light’ is a rare glory,” said Theresa Lüftinger, Project Scientist for ESA’s upcoming Ariel mission. “Follow-up observations from the NIRSPEC instrument onboard the NASA/ESA/CSA James Webb Space Telescope could do just the job. Or ESA’s upcoming Ariel mission could prove its presence. We could even find more gloriously revealing colors shining from other exoplanets.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Astronomers discover rare ‘exo-Venus’ just 40 light-years away
Gliese 12 b, which orbits a cool, red dwarf star located just 40 light-years away, promises to tell astronomers more about how planets close to their stars retain or lose their atmospheres. In this artist’s concept, Gliese 12 b is shown retaining a thin atmosphere.

Gliese 12 b, which orbits a cool, red dwarf star located just 40 light-years away, promises to tell astronomers more about how planets close to their stars retain or lose their atmospheres. In this artist’s concept, Gliese 12 b is shown retaining a thin atmosphere. NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)

Astronomers have discovered a rare type of planet called an "exo-Venus," which is between the size of Earth and Venus and is located just 40 light-years away -- practically in our back yard. Although scientists think that planets of this size could be very common in our galaxy, they are hard to identify because they are so much smaller than the big gas giants that are more commonly discovered. This new planet also seems to have similar temperatures to Earth, and studying it could help to explain how atmospheres develop and how Earth became habitable.

Read more
James Webb observes extremely hot exoplanet with 5,000 mph winds
This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. WASP-43 b is a Jupiter-sized planet circling a star roughly 280 light-years away, in the constellation Sextans. The planet orbits at a distance of about 1.3 million miles (0.014 astronomical units, or AU), completing one circuit in about 19.5 hours. Because it is so close to its star, WASP-43 b is probably tidally locked: its rotation rate and orbital period are the same, such that one side faces the star at all times.

Astronomers using the James Webb Space Telescope have modeled the weather on a distant exoplanet, revealing winds whipping around the planet at speeds of 5,000 miles per hour.

Researchers looked at exoplanet WASP-43 b, located 280 light-years away. It is a type of exoplanet called a hot Jupiter that is a similar size and mass to Jupiter, but orbits much closer to its star at just 1.3 million miles away, far closer than Mercury is to the sun. It is so close to its star that gravity holds it in place, with one side always facing the star and the other always facing out into space, so that one side (called the dayside) is burning hot and the other side (called the nightside) is much cooler. This temperature difference creates epic winds that whip around the planet's equator.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more