Skip to main content

How astronomers used James Webb to detect methane in the atmosphere of an exoplanet

One of the amazing abilities of the James Webb Space Telescope is not just detecting the presence of far-off planets, but also being able to peer into their atmospheres to see what they are composed of. With previous telescopes, this was extremely difficult to do because they lacked the powerful instruments needed for this kind of analysis, but scientists using Webb recently announced they had made a rare detection of methane in an exoplanet atmosphere.

Scientists studied the planet WASP-80 b using Webb’s NIRCam instrument, which is best known as a camera but also has a slitless spectroscopy mode which allows it to split incoming light into different wavelengths. By looking at which wavelengths are missing because they have been absorbed by the target, researchers can tell what an object — in this case, a planetary atmosphere — is composed of.

An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere.An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.
An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system. NASA

Even with Webb’s sensitive instruments, it’s still difficult to detect an exoplanet though. That’s because planets are so much smaller and dimmer than stars, which makes them almost impossible to view directly. Instead, researchers often detect them by observing the stars around which they orbit, using techniques like the transit method which measures the dip in a star’s brightness that occurs when a planet moves in front of it.

“Using the transit method, we observed the system when the planet moved in front of its star from our perspective, causing the starlight we see to dim a bit,” one of the study’s authors, Luis Welbanks of Arizona State University, explained in a statement. “It’s kind of like when someone passes in front of a lamp and the light dims. During this time, a thin ring of the planet’s atmosphere around the planet’s day/night boundary is lit up by the star, and at certain colors of light where the molecules in the planet’s atmosphere absorb light, the atmosphere looks thicker and blocks more starlight, causing a deeper dimming compared (with) other wavelengths where the atmosphere appears transparent. This method helps scientists like us understand what the planet’s atmosphere is made of by seeing which colors of light are being blocked.”

When the authors used this method on WASP-80b, they found evidence of both water and methane in the planet’s atmosphere. Planets in our solar system like Jupiter and Saturn have methane in their atmospheres too, but this planet is much warmer, with a temperature of over 1,000 degrees Fahrenheit. Finding methane in a planet of this type, called a warm Jupiter, is exciting because it can help scientists learn about planetary atmospheres and also because despite it being commonly found in planetary atmospheres in our solar system, it is rarely detected in exoplanet atmospheres.

It could also be relevant for the hunt for life beyond our planet. “Not only is methane an important gas in tracing atmospheric composition and chemistry in giant planets, it is also hypothesized to be, in combination with oxygen, a possible signature of biology,” Wellbanks said. “One of the key goals of the Habitable Worlds Observatory, the next NASA flagship mission after JWST and Roman, is to look for gases like oxygen and methane in Earth-like planets around sun-like stars.”

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers discover extremely hot exoplanet with ‘lava hemisphere’
Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It's also the closest discovered Earth-sized planet this young, at about 400 million years old.

Astronomers have discovered an Earth-sized exoplanet with an unusually extreme climate where one half of the planet is thought to be covered in lava. The planet HD 63433 d is tidally locked, meaning one side of it always faces its star while the other half always faces out into space, creating a huge difference in temperatures between the planet's two faces.

Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old.  NASA/Ames/JPL-Caltech/T. Pyle

Read more
James Webb captures a unique view of Uranus’s ring system
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more