Skip to main content

‘That’s weird’: This galaxy could help astronomers understand the earliest stars

The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe. NASA, ESA, CSA, STScI, Alex Cameron (Oxford)

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy’s holy grail discoveries: the very earliest stars.

The researchers used Webb’s instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Recommended Videos

“My first thought in looking at the galaxy’s spectrum was, ‘that’s weird,’ which is exactly what the Webb telescope was designed to reveal: totally new phenomena in the early universe that will help us understand how the cosmic story began,” said lead researcher Alex Cameron of the University of Oxford in a statement.

The light coming from this galaxy suggested that its gas was actually shining more brightly than its stars, which must be caused by the stars being extremely hot and warming up the gas. While large, hot stars typically have temperatures of 40,000 to 50,000 degrees Celsius, the stars seen in this galaxy were calculated to be over 80,000 degrees Celsius.

This is already an interesting finding, but what makes it particularly special is that it could help uncover some of the earliest stars thought to exist, called Population III stars. Star populations are numbered backwards, so the stars we see born today are Population I, and older stars are Population II. Scientists have long predicted the existence of an even older group of stars called Population III, which were those that existed in the earliest stages of the universe, but they have not yet found direct evidence of them.

These Population III stars would have almost no heavy elements in them, because these heavier elements had not yet been created by supernovae. So they would be quite different from the stars that we see today.

“We know that this galaxy does not have Population III stars, because the Webb data shows too much chemical complexity. However, its stars are different from what we are familiar with – the exotic stars in this galaxy could be a guide for understanding how galaxies transitioned from primordial stars to the types of galaxies we already know,” said fellow researcher Harley Katz.

The researchers are now looking for more of these weird galaxies to learn more about how stars were forming in the first 1 billion years after the Big Bang.

“It’s a very exciting time, to be able to use the Webb telescope to explore this time in the universe that was once inaccessible,” Cameron said. “We are just at the beginning of new discoveries and understanding.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb spots ancient Spiderweb cluster that’s 10 billion years old
This image shows the Spiderweb protocluster as seen by Webb’s NIRCam (Near-InfraRed Camera).

A new image from the James Webb Space Telescope shows thousands of glittering galaxies that it spied by peering through clouds of dust and using its infrared instruments to reveal what lies beneath. In the center of the image is the Spiderweb protocluster, which is a group of galaxies in the early stages of forming a "cosmic city."

The light from the Spiderweb has been traveling for an astonishing 10 billion years to reach us, so looking at it is like looking back in time to the early stages of the universe. Astronomers are interested in studying this cluster of over 100 galaxies interacting together because it shows how galaxies clumped together to form groups when the universe was still young.

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more
Stunning view of the Sombrero Galaxy captured by James Webb
The NASA/ESA/CSA James Webb Space Telescope recently imaged the Sombrero galaxy with its MIRI (Mid-Infrared Instrument), resolving the clumpy nature of the dust along the galaxy’s outer ring. The mid-infrared light highlights the gas and dust that are part of star formation taking place among the Sombrero galaxy’s outer disk. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year. It’s not a particular hotbed of star formation. The Sombrero galaxy is around 30 million light-years from Earth in the constellation Virgo.

A new image from the James Webb Space Telescope shows a stunning and fashionable sight: the Sombrero Galaxy, named for its resemblance to the traditional Mexican hat. With its wide, flat shape reminiscent of the hat's wide brim, the galaxy, also known as Messier 104, has outer rings that are clearly visible for the first time.

The Sombrero Galaxy is located 30 million light-years away, in the constellation of Virgo, and it has been previously imaged by the Hubble Space Telescope. But while in the Hubble image, the galaxy appears as an opaque, pale disk, in the new Webb image you can see an outer blue disk, with a small bright core right at the center.

Read more