Skip to main content

This exoplanet is over 2,000-degrees Celsiu, has vaporized metal in its atmosphere

Astronomers have studied a strange, puffy, scorching-hot planet located 600 light-years away, and have seen elements that would normally form rocks, but are so hot that they have vaporized into the atmosphere.

The planet, named WASP-76b, is around the mass of Jupiter, but orbits its star 12 times closer than Mercury is to the sun. Being so close, its atmosphere its heated to a scorching 2,000- degrees Celsius, which makes it puff up to a large size that’s six times the volume of Jupiter. These high temperatures also give astronomers the opportunity to observe elements that would normally be hard to identify in the atmosphere of a gas giant.

This artist impression illustrates how astronomers using the Gemini North telescope, one half of the International Gemini Observatory operated by NSF’s NOIRLab, have made multiple detections of rock-forming elements in the atmosphere of a Jupiter-sized exoplanet, WASP-76b. The so-called “hot Jupiter” is perilously close to its host star, which is heating the planet’s atmosphere to astounding temperatures and vaporized rock-forming elements such as magnesium, calcium and iron, providing insight into how our own Solar System formed.
This artist’s impression illustrates how astronomers using the Gemini North telescope, one half of the International Gemini Observatory operated by National Science Foundation’s NOIRLab, have made multiple detections of rock-forming elements in the atmosphere of a Jupiter-sized exoplanet, WASP-76b. The so-called “hot Jupiter” is perilously close to its host star, which is heating the planet’s atmosphere to astounding temperatures and vaporizing rock-forming elements such as magnesium, calcium and iron, providing insight into how our own Solar System formed. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani

The researchers found a number of elements that would usually form rocks, like magnesium, calcium, and nickel. But because of the extreme temperatures, these elements are actually in gas form on WASP-76b. In total, the researchers identified 11 elements, including those which are thought to be present in gas giants like Jupiter and Saturn, but whose concentrations haven’t been measured.

That means that by studying this exceptionally hot planet, we can learn something new about other gas giants. “Truly rare are the times when an exoplanet hundreds of light-years away can teach us something that would otherwise likely be impossible to know about our own solar system,” said lead researcher Stefan Pelletier of the Université de Montréal in a statement. “That is the case with this study.”

One theory suggested by the data is that this planet may at some point in its history have swallowed a smaller planet, which was more like Mercury. Mercury is composed of metallic compounds and silicate, unlike the primarily helium and hydrogen that makes up gas giants.

And one more intriguing finding here was the first detection in an exoplanet of vanadium oxide, a compound that can have a significant impact on exoplanet atmospheres. “This molecule is of high interest to astronomers because it can have a great impact on the atmospheric structure of hot giant planets,” said  Pelletier. “This molecule plays a similar role to ozone being extremely efficient at heating Earth’s upper atmosphere.

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb gets most detailed look yet at an exoplanet’s atmosphere
New observations of WASP-39b with the JWST have provided a clearer picture of the exoplanet, showing the presence of sodium, potassium, water, carbon dioxide, carbon monoxide and sulfur dioxide in the planet's atmosphere. This artist's illustration also displays newly detected patches of clouds scattered across the planet.

One of the big advances promised by the James Webb Space Telescope is the ability to investigate exoplanets in greater detail than ever before. Webb has already imaged its first exoplanet and made the first detection of carbon dioxide in an exoplanet atmosphere, but now astronomers have used the telescope to get the most in-depth look yet at the atmosphere of planet WASP-39 b.

Webb uses instruments called spectrometers which break light down into different wavelengths to see which ones have been absorbed by various molecules in an atmosphere. This allows researchers to see spectra of the planet's atmosphere, telling them what elements are present, which the researchers describe as a "game changer" for the study of exoplanets.

Read more
Strangely chonky exoplanet has astronomers puzzled
Artist’s conception of a gas giant exoplanet orbiting around a Sun-like star. The young exoplanet HD 114082 b revolves around its Sun-like star within 110 days at a distance of 0.5 astronomical units.

Astronomers recently discovered a hefty exoplanet orbiting a star similar to our sun. At just 15 million years old, this chunky planet is a baby by galactic standards, old, but it has researchers puzzled due to its tremendous density.

The planet, called HD 114082 b, is similar in size to Jupiter, but seems to have eight times its mass. It's common for astronomers to discover gas giants similar to or larger than Jupiter, but it's very unusual to discover a planet this dense and heavy.  “Compared to currently accepted models, HD 114082 b is about two to three times too dense for a young gas giant with only 15 million years of age,” said lead author Olga Zakhozhay in a statement.

Read more
Super-sensitive exoplanet-hunting instrument captures its first light data
James Chong, infrastructure technician at Keck Observatory, assisting with the delicate lift of the Zerodur optics bench into the observatory basement where the instrument resides.

Astronomers will soon have a new tool for hunting exoplanets, as the W. M. Keck Observatory's Keck Planet Finder (KPF) instrument recently took its first observations. KPF's "first light" observations captured data from Jupiter, demonstrating how the instrument will be able to detect planets beyond our solar system in the future.

Located at Maunakea in Hawaiʻi, the new instrument detects exoplanets using the radial velocity method. This works by observing a star and looking for a slight wobble, caused by the gravity of planets orbiting around it. This wobble changes the light coming from the star just slightly, in a way that can be used to work out the properties of the planet. The instrument measures spectra, or the wavelengths of light coming from a star, with more massive planets making bigger wobbles.

Read more