Skip to main content

This peculiar galaxy has two supermassive black holes at its heart

As hard as it is to picture, with billions or even trillions of galaxies in the universe, entire galaxies can collide with each other. When that happens, one galaxy can be destroyed or the two can merge into one. But even in the case of galaxy mergers, the effects of the collision are often visible for billions of years afterward.

That’s shown in a recent image taken by the Gemini South observatory, which shows the chaotic result of a merger between two spiral galaxies 1 billion years ago.

Gemini South, one half of the International Gemini Observatory operated by NSF’s NOIRLab, captures the billion-year-old aftermath of a double spiral galaxy collision. At the heart of this chaotic interaction, entwined and caught in the midst of the chaos, is a pair of supermassive black holes — the closest such pair ever recorded from Earth.
Gemini South, one half of the International Gemini Observatory operated by NSF’s NOIRLab, captures the billion-year-old aftermath of a double spiral galaxy collision. At the heart of this chaotic interaction, entwined and caught in the midst of the chaos, is a pair of supermassive black holes — the closest such pair ever recorded from Earth. International Gemini Observatory/NOIRLab/NSF/AURA; Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), J. Miller (International Gemini Observatory/NSF’s NOIRLab), M. Rodriguez (International Gemini Observatory/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab)

The resulting galaxy, called NGC 7727 and located 90 million light-years away, shows the cloudy blobs of dust and gas that now swirl around the galactic core. The stretching arms of the spiral galaxies have been pulled apart by the gravitational forces of the merger, leaving behind an unstructured shape which leads this to be classified as a “peculiar galaxy.” Despite its messy appearance, parts of the newly formed galaxy are ideal locations for the formation of stars as pockets of dust and gas and pulled around and pushed together.

At the heart of almost every galaxy is an enormous supermassive black hole, but this galaxy is a little different. It has not one but two supermassive black holes, one from each of the original galaxies. One of these is 154 million times the mass of the sun, and the other just 6.3 million times the mass of the sun, and the two are located 1,600 light-years apart in their own galactic nuclei.

This galaxy won’t remain in this unusual state forever though. Eventually, the huge gravitational forces of the two supermassive black holes will pull them closer and closer together, and scientists estimate that the two will merge in around 250 million years’ time. This monumental event will send out ripples in spacetime called gravitational waves and will create an even larger supermassive black hole.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more
Unique black hole is trailed by 200,000 light-year-long tail of stars
This is an artist's impression of a runaway supermassive black hole that was ejected from its host galaxy as a result of a tussle between it and two other black holes. As the black hole plows through intergalactic space it compresses tenuous gas in front to it. This precipitates the birth of hot blue stars. This illustration is based on Hubble Space Telescope observations of a 200,000-light-year-long contrail of stars behind an escaping black hole.

Black holes might have a reputation as terrifying monsters, devouring all they come into contact with -- but they can be a force of creation too, feeding the formation of new stars. Researchers using data from the Hubble Space Telescope recently spotted an unexpectedly huge trail of stars forming in the wake of a rogue black hole.

While most very large black holes, called supermassive black holes, sit at the center of galaxies, occasionally these enormous beasts can be found wandering alone in the depths of space. That's the case with the recently discovered black hole with the mass of 20 million suns, which is streaking through the sky at tremendous speed. This likely began with two galaxies merging, each with its own supermassive black hole, which formed a binary system. Then a third galaxy got too close, and in the chaos of a three-way merger one of the black holes was kicked out and sent zipping off into space -- so fast that if it were in our solar system, it would travel from the Earth to the moon in 14 minutes.

Read more
These supermassive black holes are cozying up close together
Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) to look deep into the heart of the pair of merging galaxies known as UGC 4211 discovered two black holes growing side by side, just 750 light-years apart. This artist’s conception shows the late-stage galaxy merger and its two central black holes. The binary black holes are the closest together ever observed in multiple wavelengths.

At the center of most galaxies lies a single monster: a supermassive black hole, with a mass millions or even billions of times that of the sun. These lonely beasts typically sit alone in the heart of galaxies, but recent research found two of these monsters nestled close together in the galaxy UGC4211.

The two supermassive black holes originated in two different galaxies which are now merging into one, located relatively close by at a distance of 500 million light-years from Earth. The pair is among the closest black hole binaries ever observed, sitting just 750 light-years apart, and was observed using the Atacama Large Millimeter/submillimeter Array (ALMA).

Read more