Skip to main content

See the terrifying scale of a supermassive black hole in NASA visualization

This week is black hole week, and NASA is celebrating by sharing some stunning visualizations of black holes, including a frankly disturbing visualization to help you picture just how large a supermassive black hole is. Supermassive black holes are found at the center of galaxies (including our own) and generally speaking, the bigger the galaxy, the bigger the black hole.

Illustration of the black hole Sagittarius A* at the center of the Milky Way.
Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

While a typical black hole weighs up to around 10 times the mass of the sun, supermassive black holes can weigt millions or even billions of times the mass of the sun. These objects are incredibly dense, though, and it’s hard to picture just how big such an object would be. That’s the point of this video comparison, which shows the size of different types of black holes in comparison to our solar system, scaled according to their shadows.

NASA Animation Sizes Up the Biggest Black Holes

Learning about black holes is challenging because their tremendous gravity means that they absorb light that comes too close to them — however, they often have disks of dust and gas swirling around them that rubs together and gets hot, making them visible to telescopes. Astronomers can’t directly see the black holes themselves, but they can see this warm matter, which is how the Event Horizon Telescope project has been able to capture famous images of black holes.

This is the first image of Sagittarius A* (or Sgr A* for short), the supermassive black hole at the centre of our galaxy. It’s the first direct visual evidence of the presence of this black hole. It was captured by the Event Horizon Telescope (EHT), an array which linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The telescope is named after the “event horizon”, the boundary of the black hole beyond which no light can escape.
This is the first image of Sagittarius A* (or Sgr A* for short), the supermassive black hole at the center of our galaxy. It’s the first direct visual evidence of the presence of this black hole. It was captured by the Event Horizon Telescope (EHT), an array that links together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The telescope is named after the “event horizon”, the boundary of the black hole beyond which no light can escape. EHT Collaboration

Supermassive black holes are particularly interesting to study because we are still learning about their relationship to the galaxies which they inhabit, and about how they grow so large.

“Direct measurements, many made with the help of the Hubble Space Telescope, confirm the presence of more than 100 supermassive black holes,” said Jeremy Schnittman, a theorist at NASA’s Goddard Space Flight Center, in a statement. “How do they get so big? When galaxies collide, their central black holes eventually may merge together too.”

This merging process would be epic, producing such great force that gravitational waves would be detectable from Earth. But to tune into these waves, we’ll need a new instrument like the upcoming Laser Interferometer Space Antenna mission, a collaboration between NASA and the European Space Agency that will use three spacecraft that shoot lasers toward each other and which will be able to detect these gravitational waves.

“Since 2015, gravitational wave observatories on Earth have detected the mergers of black holes with a few dozen solar masses thanks to the tiny ripples in space-time these events produce,” said Goddard astrophysicist Ira Thorpe. “Mergers of supermassive black holes will produce waves of much lower frequencies which can be detected using a space-based observatory millions of times larger than its Earth-based counterparts.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble goes hunting for elusive medium-sized black holes
A Hubble Space Telescope image of the globular star cluster, Messier 4. The cluster is a dense collection of several hundred thousand stars. Astronomers suspect that an intermediate-mass black hole, weighing as much as 800 times the mass of our Sun, is lurking, unseen, at its core.

There's something odd about the black holes discovered to date. We've found plenty of smaller black holes, with masses less than 100 times that of the sun, and plenty of huge black holes, with masses millions or even billions of times that of the sun. But we've found hardly any black holes in the intermediate mass range, arguably not enough to confirm that they even exist, and it's not really clear why.

Now, astronomers are using the Hubble Space Telescope to hunt for these missing black holes. Hubble has previously found some evidence of black holes in this intermediate range, and now it is being used to search for examples within a few thousand light-years of Earth.

Read more
Astronomers just spotted the largest cosmic explosion ever seen
Artist’s impression of a black hole accretion.

Astronomers recently observed the largest cosmic explosion ever seen, far brighter than a supernova and lasting for much longer too. They believe that the outpouring of light is due to a supermassive black hole devouring a large cloud of gas.

Some of the brightest events seen in the sky are supernovae, which are huge explosions that occur when a massive star comes to the end of its life. But the recently observed event, called AT2021lwx, was 10 times brighter than any known supernova. Supernovae also typically last for a few months, but this event has been shining out for several years.

Read more
Supermassive black hole spews out jet of matter in first-of-its-kind image
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole's poles in a phenomenon thought to be related to the black hole's spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Read more