Skip to main content

James Webb spots the most distant active supermassive black hole ever discovered

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

A panoramic vista, known as the Cosmic Evolution Early Release Science (CEERS) Survey.
There is so much detail to explore in this panoramic vista, known as the Cosmic Evolution Early Release Science (CEERS) Survey. The galaxies that first caught the eyes of the researchers are those that haven’t appeared in any other images – Webb was the first to reveal their presence. To find them, seek the tiniest, reddest dots speckled throughout this survey. The light from some of them has traveled for over 13 billion years to reach the telescope. The team followed up to obtain spectra with Webb, which led to the discovery of the most distant active supermassive black hole currently known, along with two more extremely distant active supermassive black holes that existed when the universe was only 1 billion years old. Image NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin); Image Processing Alyssa Pagan (STScI)

A very early example of these supermassive black holes was recently discovered, dating back to just 570 million years after the big bang. Located in a galaxy named CEERS 1019, it was identified as part of a survey called Cosmic Evolution Early Release Science (CEERS) which uses Webb to take huge images of parts of the sky. By looking at regions away from the bright center of the Milky Way and which don’t have bright nearby galaxies obscuring the view, the survey can identify very dim and distant objects.

“Looking at this distant object with this telescope is a lot like looking at data from black holes that exist in galaxies near our own,” said lead researcher Rebecca Larson of the University of Texas at Austin in a statement.

Crop of Webb's CEERS Survey image.
Crop of Webb’s CEERS Survey image. Image NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin); Image Processing Alyssa Pagan (STScI)

The galaxy in which the supermassive black hole resides is interesting too. In the data, it looks like three blobs in a line rather than the single disk which would be expected. That could give clues to how the galaxy came to be, as the result of colliding with other nearby galaxies.

“We’re not used to seeing so much structure in images at these distances,” said CEERS team member Jeyhan Kartaltepe of the Rochester Institute of Technology. “A galaxy merger could be partly responsible for fueling the activity in this galaxy’s black hole, and that could also lead to increased star formation.”

As well as this black hole, CEERS also identified 11 extremely old galaxies, ranging from the time when the universe was between 470 million and 675 million years old. By studying these very early galaxies, researchers hope to learn about the way that galaxies formed and grew throughout the history of the universe.

“Webb was the first to detect some of these galaxies,” said Seiji Fujimoto of the University of Texas at Austin. “This set, along with other distant galaxies we may identify in the future, might change our understanding of star formation and galaxy evolution throughout cosmic history.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See a stunning 3D visualization of astronomy’s most beautiful object
This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light).

This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light). Greg Bacon (STScI), Ralf Crawford (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI), Frank Summers (STScI), NASA's Universe of Learning

The Pillars of Creation are perhaps the most famous object in all of astronomy. Part of the Eagle Nebula, this vista was first captured by the Hubble Space Telescope in 1995, and has captivated the public ever since with its dramatic rising pillars of dust and gas that stretch several light-years high. The nebula has been imaged often since then, including again by Hubble in 2014 and more recently by the James Webb Space Telescope in 2022.

Read more
Gorgeous Webb image of Serpens Nebula shows a strange alignment
This image shows the centre of the Serpens Nebula as seen by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam).

The Serpens Nebula, located 1,300 light-years from Earth, is home to a particularly dense cluster of newly forming stars (about 100,000 years old), some of which will eventually grow to the mass of our Sun. Webb’s image of this nebula revealed a grouping of aligned protostellar outflows (seen in the top left). These jets are identified by bright clumpy streaks that appear red, which are shock waves caused when the jet hits the surrounding gas and dust. NASA, ESA, CSA, STScI, K. Pontoppidan (NASA’s Jet Propulsion Laboratory), J. Green (Space Telescope Science Institute)

This stunning new image from the James Webb Space Telescope shows the famous Serpens Nebula, a dense star-forming region where new stars are being born amid clouds of dust and gas. Unlike some other nebulae, which are illuminated by radiation from stars that causes them to glow, this is a type called a reflection nebula, so it only shines due to the light that reflects from other sources.

Read more
Well-known star turns out to be not one star, but twins
This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles.

This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles. U.S. NSF/NSF NRAO/B. Saxton

There are some regions and objects that become favorite targets for astronomers -- often because they are nearby (and so easier to observe) and because they are a well-known example of an object like a stellar nursery or a black hole. But occasionally, even these well-known objects turn out to be hiding surprises. This was the case recently, when observations from the James Webb Space Telescope revealed that a particular star, WL 20S, in the frequently observed WL20 region, turned out not to be a single star at all, but actually a pair.

Read more