Skip to main content

James Webb spots the most distant active supermassive black hole ever discovered

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

A panoramic vista, known as the Cosmic Evolution Early Release Science (CEERS) Survey.
There is so much detail to explore in this panoramic vista, known as the Cosmic Evolution Early Release Science (CEERS) Survey. The galaxies that first caught the eyes of the researchers are those that haven’t appeared in any other images – Webb was the first to reveal their presence. To find them, seek the tiniest, reddest dots speckled throughout this survey. The light from some of them has traveled for over 13 billion years to reach the telescope. The team followed up to obtain spectra with Webb, which led to the discovery of the most distant active supermassive black hole currently known, along with two more extremely distant active supermassive black holes that existed when the universe was only 1 billion years old. Image NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin); Image Processing Alyssa Pagan (STScI)

A very early example of these supermassive black holes was recently discovered, dating back to just 570 million years after the big bang. Located in a galaxy named CEERS 1019, it was identified as part of a survey called Cosmic Evolution Early Release Science (CEERS) which uses Webb to take huge images of parts of the sky. By looking at regions away from the bright center of the Milky Way and which don’t have bright nearby galaxies obscuring the view, the survey can identify very dim and distant objects.

Recommended Videos

“Looking at this distant object with this telescope is a lot like looking at data from black holes that exist in galaxies near our own,” said lead researcher Rebecca Larson of the University of Texas at Austin in a statement.

Crop of Webb's CEERS Survey image.
Crop of Webb’s CEERS Survey image. Image NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin); Image Processing Alyssa Pagan (STScI)

The galaxy in which the supermassive black hole resides is interesting too. In the data, it looks like three blobs in a line rather than the single disk which would be expected. That could give clues to how the galaxy came to be, as the result of colliding with other nearby galaxies.

“We’re not used to seeing so much structure in images at these distances,” said CEERS team member Jeyhan Kartaltepe of the Rochester Institute of Technology. “A galaxy merger could be partly responsible for fueling the activity in this galaxy’s black hole, and that could also lead to increased star formation.”

As well as this black hole, CEERS also identified 11 extremely old galaxies, ranging from the time when the universe was between 470 million and 675 million years old. By studying these very early galaxies, researchers hope to learn about the way that galaxies formed and grew throughout the history of the universe.

“Webb was the first to detect some of these galaxies,” said Seiji Fujimoto of the University of Texas at Austin. “This set, along with other distant galaxies we may identify in the future, might change our understanding of star formation and galaxy evolution throughout cosmic history.”

Please enable Javascript to view this content

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Gorgeous James Webb Space Telescope images land on new U.S. stamps
A new USPS stamp featuring an image taken by the James Webb Space Telescope.

In a mark of its huge impact on the world of science and astronomy, NASA’s James Webb Space Telescope finds itself once again as the inspiration for a new set of stamps from the United States Postal Service (USPS).

Two new stamps issued this month feature iconic images captured by Webb, one of them showing a spiral galaxy called NGC 628. “Webb’s observations combine near- and mid-infrared light to reveal glowing gas and dust in stark shades of orange and red, as well as finer spiral shapes with the appearance of jagged edges,” NASA said of the image (below), adding that the galaxy is located 32 million light-years away in the Pisces constellation.

Read more
Group wants to launch a telescope to study black holes from space
Artist concept of the proposed BHEX network.

Black holes are some of the most extreme objects in the universe, and a new mission proposal suggests launching a space telescope specifically to study them. The Event Horizon Telescope (EHT) group, which took both the first-ever image of a black hole in 2019 and the first-ever image of the supermassive black hole at the center of our galaxy in 2022, has plans for a new mission called the Black Hole Explorer (BHEX).

The idea of BHEX is to use a space-based telescope to collect even more detailed information from black holes, as there is less interference from water vapor when viewing them from above the Earth's atmosphere. The aim would be to combine data from this telescope with the many telescopes on the ground that are already used in the EHT project. The next phase of the project is a collaboration between the Center for Astrophysics | Harvard & Smithsonian (CfA) and the National Radio Astronomy Observatory (NRAO).

Read more
James Webb spots ancient Spiderweb cluster that’s 10 billion years old
This image shows the Spiderweb protocluster as seen by Webb’s NIRCam (Near-InfraRed Camera).

A new image from the James Webb Space Telescope shows thousands of glittering galaxies that it spied by peering through clouds of dust and using its infrared instruments to reveal what lies beneath. In the center of the image is the Spiderweb protocluster, which is a group of galaxies in the early stages of forming a "cosmic city."

The light from the Spiderweb has been traveling for an astonishing 10 billion years to reach us, so looking at it is like looking back in time to the early stages of the universe. Astronomers are interested in studying this cluster of over 100 galaxies interacting together because it shows how galaxies clumped together to form groups when the universe was still young.

Read more