Skip to main content

Scientists want your help to search for black holes

Even though black holes swallow anything that comes near them — even light — they are still possible to locate by looking for signs of their effects. Black holes are extremely dense, so they have a lot of mass and a strong gravitational effect that can be observed from light-years away. But the universe is a big place, and researchers are hoping that the public can help them to identify more black holes in the name of scientific exploration.

A project called Black Hole Hunter invites members of the public to search through data collected by NASA’s Transiting Exoplanet Survey Satellite (TESS) to look for signs of a black hole. Using a technique called gravitational microlensing, citizen scientists will look at how the brightness of light from various stars changes over time, looking for indications that a black hole could have passed in front of a star and bent the light coming from it. This should enable the project to identify black holes that would otherwise be invisible.

An illustration of a black hole.
An illustration of a black hole. Black Hole Hunters / Zooniverse

One of the researchers on the project, Matt Middleton of the University of Southampton, explained in a statement: “Black holes are invisible. Their gravitational pull is so strong that not even light can escape, making them incredibly hard to see, even with specialist equipment. But that gravitational pull is also how we can detect them because it’s so strong that it can bend and focus light, acting like a lens that magnifies light from stars. We can detect this magnification and that’s how we know a black hole exists.

“We know our galaxy is teeming with black holes, but we’ve only found a handful. You could help us change that.”

Interested members of the public can get to work looking for black holes at the Zooniverse website, which also hosts other citizen science projects and includes training on how to spot indications of a black hole.

“Anyone of any age can do this, and you don’t need to be an expert to take part,” said another of the researchers, Adam McMaster. “All you really need is an interest in space and as little or as much time as you can give for looking at the graphs and helping us spot the patterns that could reveal a black hole. Your work will directly contribute to real scientific research, and you’ll be helping to make the invisible become visible.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble scientists create tool for erasing satellite trails from images
This image captures the streak of an Earth-orbiting artificial satellite crossing Hubble's field of view during an observation of "The Mice" interacting galaxies (NGC 4676). A typical satellite trail is very thin and will affect less than 0.5% of a single Hubble exposure. Though in this case the satellite overlaps a portion of the target galaxy, the observation quality is not affected. That's because multiple exposures are taken of the same target. And the satellite trail is not in other frames. Developers at the Space Telescope Science Institute in Baltimore, Maryland, have software that identifies the bad pixels from the satellite photobombing, the extent to which they affect the image, and then flags them. When flagged, scientists can recover the full field of view. Even as the number of satellites increases over the decade, these tools for cleaning the images will still be applicable.

With ever-increasing numbers of satellites in the sky, astronomers have repeatedly expressed worry over how these satellites could impact scientific research. Earlier this year, a study of Hubble Space Telescope observations showed how some images were being ruined by streaks of light coming from satellites -- and while only a small percentage of Hubble images were affected, the authors raised concerns that with the projected number of satellites set to explode in the next decade, the problem could become serious.

Now, astronomers at the Space Telescope Science Institute (STScI), which runs Hubble, have come up with a tool to deal with satellite streaks in Hubble images. "We developed a new tool to identify satellite trails that is an improvement over the previous satellite software because it is much more sensitive. So we think it will be better for identifying and removing satellite trails in Hubble images," said Dave Stark of STScI in a statement.

Read more
See the terrifying scale of a supermassive black hole in NASA visualization
Illustration of the black hole Sagittarius A* at the center of the Milky Way.

This week is black hole week, and NASA is celebrating by sharing some stunning visualizations of black holes, including a frankly disturbing visualization to help you picture just how large a supermassive black hole is. Supermassive black holes are found at the center of galaxies (including our own) and generally speaking, the bigger the galaxy, the bigger the black hole.

Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

Read more
Supermassive black hole spews out jet of matter in first-of-its-kind image
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole's poles in a phenomenon thought to be related to the black hole's spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Read more