Skip to main content

Supermassive black hole spews out jet of matter in first-of-its-kind image

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole’s poles in a phenomenon thought to be related to the black hole’s spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Some of the biggest jets in the known universe come from the huge black holes at the center of galaxies, called supermassive black holes. And now, for the first time, astronomers have imaged a supermassive black hole expelling one such jet. The black hole in question is the famous one at the heart of galaxy Messier 87, which is known for being the first black hole ever imaged by a collaboration called the Event Horizon Telescope (EHT). Using a similar partnership of telescopes around the world, astronomers were able to capture this monster black hole spewing out matter in a jet.

This image shows the jet and shadow of the black hole at the centre of the M87 galaxy together for the first time. The observations were obtained with telescopes from the Global Millimetre VLBI Array (GMVA), the Atacama Large Millimeter/submillimeter Array (ALMA), of which ESO is a partner, and the Greenland Telescope. This image gives scientists the context needed to understand how the powerful jet is formed. The new observations also revealed that the black hole’s ring, shown here in the inset, is 50% larger than the ring observed at shorter radio wavelengths by the Event Horizon Telescope (EHT). This suggests that in the new image we see more of the material that is falling towards the black hole than what we could see with the EHT.
This GMVA+ALMA image shows M87’s jet and black hole shadow together for the first time, giving scientists the context needed to understand where the powerful jet formed. The new observations also revealed that the black hole’s ring, shown in the inset, is 50% larger than scientists previously believed. R.-S. Lu (SHAO), E. Ros (MPIfR), S. Dagnello (NRAO/AUI/NSF)

The observations have given a new view of the black hole itself too. “The original EHT imaging revealed only a portion of the accretion disk surrounding the center of the black hole. By changing the observing wavelengths from 1.3 millimeters to 3.5 millimeters, we can see more of the accretion disk, and now the jet, at the same time,” said one of the researchers, Toney Minter, in a statement. “This revealed that the ring around the black hole is 50% larger than we previously believed.”

The observations were taken with radio telescopes, including powerful arrays like the Global mm-VLBI Array (GMVA) and the Atacama Large Millimeter/submillimeter Array (ALMA), which use many smaller dishes working together to look at very distant radio sources. By combining the efforts of different observatories, astronomers could get a better look at this famous black hole. They knew the black hole was giving off jets, but they didn’t know exactly how or where those jets were forming.

“These results showed — for the first time — where the jet is being formed. Prior to this, there were two theories about where they might come from,” said Minter. “But this observation actually showed that the energy from the magnetic fields and the winds are working together.”

This helps scientists understand the process through which the jets are created, which involves the magnetic fields around the core of the black hole and the winds that blow through the disk of matter around the black hole, called the accretion disk. To learn more about this process, the researchers want to perform more observations using the global telescope network.

“We plan to observe the region around the black hole at the center of M87 at different radio wavelengths to further study the emission of the jet,” said Eduardo Ros from the Max Planck Institute for Radio Astronomy in another statement. “The coming years will be exciting, as we will be able to learn more about what happens near one of the most mysterious regions in the universe.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the incredible first images taken by the dark matter-hunting Euclid telescope
Euclid’s Near-Infrared Spectrometer and Photometer (NISP) instrument is dedicated to measuring the amount of light that galaxies emit at each wavelength. It will image the sky in infrared light (900–2000 nm) to measuring the brightness and intensity of light. This image was taken during commissioning of Euclid to check that the focused instrument worked as expected. This is a raw image taken using NISP’s ‘Y’ filter. Because it is largely unprocessed, some unwanted artefacts remain – for example the cosmic rays that shoot straight across, seen especially in the VIS image. The Euclid Consortium will ultimately turn the longer-exposed survey observations into science-ready images that are artefact-free, more detailed, and razor sharp.

The recently-launched Euclid space telescope just took some of its first images, and the European Space Agency (ESA) has shared them to give a taste of what is to come from this dark matter investigation tool.

Even though they are only preliminary test images, they still give a stunning view of distant galaxies and show what Euclid will be able to produce once it begins its science operations in a few months' time. The aim of the mission is to learn about dark matter and dark energy by creating a 3D map of the dark matter in the universe.

Read more
See the stunning image James Webb took to celebrate its first birthday
The first anniversary image from the NASA/ESA/CSA James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disc, the makings of future planetary systems.

Today marks the one-year anniversary of the first images shared from the James Webb Space Telescope, and to celebrate this milestone NASA has shared yet another gorgeous image of space captured by Webb.

The new image shows a star system called Rho Ophiuchi; a busy region where new stars are being born amide swirls of dust and gas. Located just 390 light-years away, Webb was able to capture the region in stunning detail using its NIRCam instrument.

Read more
Researchers want to use gravitational waves to learn about dark matter
Artist's conception shows two merging black holes similar to those detected by LIGO.

When two sufficiently massive objects collide -- such as when two black holes merge -- the forces can actually bend space-time, creating ripples called gravitational waves. These gravitational waves can be detected even from millions of light-years away, making them a way to learn about distant, dramatic events in far-off parts of the universe. And now, a team of astronomers has come up with a method for using gravitational waves to study the mysterious phenomenon of dark matter.

The idea of the research was to create different computer models of what gravitational waves from black hole mergers would look like in universes with different types of dark matter. By comparing the models to what is seen in the real world, we can learn more about what type of dark matter is most likely.

Read more