Skip to main content

See the stunning first images taken by the dark matter-hunting Euclid telescope

The European Space Agency (ESA) has released the first full-color images taken by Euclid, a space telescope that was launched earlier this year to probe the mysteries of dark matter and dark energy. Euclid will image a huge area of the sky to build up a 3D map of the universe, helping researchers to track the dark matter that is clustered around galaxies and the dark energy that counteracts gravity to push galaxies apart.

The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars.
The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Euclid is designed with a wide field of view, meaning it is unlike telescopes like the James Webb Space Telescope which is designed to look in very high resolution at specific targets. Instead, Euclid looks over a large area to capture views that will cover one-third of the sky and contain billions of galaxies. Even so, Euclid is still powerful enough to see some targets in stunning detail, like this image of the famous Horsehead Nebula which is located 1,375 light-years away.

Recommended Videos

Primarily, though, Euclid will be used to look at galaxies on a larger scale, such as an image that shows the Perseus cluster. This cluster contains thousands of galaxies, with hundreds of thousands more galaxies visible in the background.

One of the first images captured by Euclid shows the Perseus cluster, a group of thousands of galaxies located 240 million light-years from Earth. The closest galaxies appear as swirling structures while hundreds of thousands of background galaxies are visible only as points of light.
One of the first images captured by Euclid shows the Perseus cluster, a group of thousands of galaxies located 240 million light-years from Earth. The closest galaxies appear as swirling structures while hundreds of thousands of background galaxies are visible only as points of light. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

“We have never seen astronomical images like this before, containing so much detail. They are even more beautiful and sharp than we could have hoped for, showing us many previously unseen features in well-known areas of the nearby Universe. Now we are ready to observe billions of galaxies, and study their evolution over cosmic time,” said René Laureijs, ESA Euclid Project Scientist, in a statement.

The spiral galaxy IC 342, located about 11 million light-years from Earth, lies behind the crowded plane of the Milky Way: Dust, gas, and stars obscure it from our view. Euclid used its near-infrared instrument to peer through the dust and study it.
The spiral galaxy IC 342, located about 11 million light-years from Earth, lies behind the crowded plane of the Milky Way: Dust, gas, and stars obscure it from our view. Euclid used its near-infrared instrument to peer through the dust and study it. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Euclid’s preliminary test images were released in August this year, but soon after the telescope developed an issue with its guidance system. The instrument which was designed to lock onto stars was intermittently failing, causing errors. Fortunately, that issue was fixed with a software update in October, and the telescope is now able to capture these beautiful images of various targets.

The galaxy NGC 6822 is located 1.6 million light-years from Earth. Euclid was able to capture this view of the entire galaxy and its surroundings in high resolution in about one hour, which isn’t possible with ground-based telescopes or targeted telescopes (such as NASA’s Webb) that have narrower fields of view.
The galaxy NGC 6822 is located 1.6 million light-years from Earth. Euclid was able to capture this view of the entire galaxy and its surroundings in high resolution in about one hour, which isn’t possible with ground-based telescopes or targeted telescopes (such as NASA’s Webb) that have narrower fields of view. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

“Euclid’s first images mark the beginning of a new era of studying dark matter and dark energy,” said Mike Seiffert, Euclid project scientist at NASA’s Jet Propulsion Laboratory. “This is the first space telescope dedicated to dark universe studies, and the sheer scale of the data we’re going to get out of this will be unlike anything we’ve had before. These are big mysteries, so it’s exciting for the international cosmology community to see this day finally arrive.”

This sparkly image shows Euclid’s view of a globular cluster – a collection of gravitationally bound stars that don’t quite form a galaxy – called NGC 6397. No other telescope can capture an entire globular cluster in a single observation and distinguish so many stars within it.
This sparkly image shows Euclid’s view of a globular cluster – a collection of gravitationally bound stars that don’t quite form a galaxy – called NGC 6397. No other telescope can capture an entire globular cluster in a single observation and distinguish so many stars within it. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO
Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Stunning images of nearby galaxies from the VLT Survey Telescope
Image of the irregular dwarf galaxy Sextans A, located at a distance of about 4 million light years from us, towards the edge of the Local Group, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile.

A gorgeous new set of images shows the striking sight of nearby galaxies, captured by a telescope called the VLT Survey Telescope (VST), located at the European Southern Observatory (ESO)'s Paranal Observatory in Chile. Some of these galaxies are well-known, like the famous Sextans A, which is a small dwarf galaxy with an unusual square shape that is located just 4 million light years away.

Sextans A, shown above, is just a fraction of the size of our Milky Way galaxy at only 5,000 light years across and has been shaped by epic supernova events as stars come to the end of their lives and explode, pushing the material of the galaxy into its odd configuration.

Read more
See the stunning sights of the Euclid telescope’s 208-gigapixel cosmic atlas
This image shows an area of the mosaic released by ESA’s Euclid space telescope on 15 October 2024. The area is zoomed in 150 times compared to the large mosaic. On the left of the image, Euclid captured two galaxies (called ESO 364-G035 and G036) interacting with each other, 420 million light-years from us. On the right of the image, galaxy cluster Abell 3381 is visible, 678 million light-years away from us.

When the European Space Agency (ESA)'s Euclid telescope launched last year, it was promised to survey a huge chunk of the sky to help understand the mysteries of dark matter. Now, having overcome some icy challenges in its first year of operation, the ESA has released a first look at the great cosmic atlas that Euclid is building.

Built from 260 observations taken over just two weeks in March and April this year, the first chunk of the map is an enormous mosaic of 208 gigapixels. A video zooming in to areas of the mosaic shows just how detailed the images are of the Southern Sky that covers 14 million distant galaxies, plus tens of millions of stars within our own Milky Way:

Read more
See the first images from Europe’s Sentinel-2C satellite looking down on Earth
Seville from Copernicus Sentinel-2C

Earlier this month, the European Space Agency (ESA) launched its newest Earth-observation satellite, known as Copernicus Sentinel-2C. Joining its siblings Sentinel-2A and B, it will take high-resolution images of the planet's surface from its altitude of almost 500 miles, capturing some stunning views of lesser-seen parts of our world.

Now, the first images taken by Sentinel-2C have been released, including views over European cities, a stretch of the French coast, and the effects of the wildfires raging through California. "These initial images stand as a powerful testament to the success of this extraordinary mission," said Simonetta Cheli, ESA’s director of Earth Observation Programmes, in a statement. "While Sentinel-2 will continue to serve Copernicus with distinction for years to come, we are already looking ahead as we develop the next chapter with the Sentinel-2 Next Generation mission."

Read more