Skip to main content

See the stunning first images taken by the dark matter-hunting Euclid telescope

The European Space Agency (ESA) has released the first full-color images taken by Euclid, a space telescope that was launched earlier this year to probe the mysteries of dark matter and dark energy. Euclid will image a huge area of the sky to build up a 3D map of the universe, helping researchers to track the dark matter that is clustered around galaxies and the dark energy that counteracts gravity to push galaxies apart.

The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars.
The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Euclid is designed with a wide field of view, meaning it is unlike telescopes like the James Webb Space Telescope which is designed to look in very high resolution at specific targets. Instead, Euclid looks over a large area to capture views that will cover one-third of the sky and contain billions of galaxies. Even so, Euclid is still powerful enough to see some targets in stunning detail, like this image of the famous Horsehead Nebula which is located 1,375 light-years away.

Primarily, though, Euclid will be used to look at galaxies on a larger scale, such as an image that shows the Perseus cluster. This cluster contains thousands of galaxies, with hundreds of thousands more galaxies visible in the background.

One of the first images captured by Euclid shows the Perseus cluster, a group of thousands of galaxies located 240 million light-years from Earth. The closest galaxies appear as swirling structures while hundreds of thousands of background galaxies are visible only as points of light.
One of the first images captured by Euclid shows the Perseus cluster, a group of thousands of galaxies located 240 million light-years from Earth. The closest galaxies appear as swirling structures while hundreds of thousands of background galaxies are visible only as points of light. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

“We have never seen astronomical images like this before, containing so much detail. They are even more beautiful and sharp than we could have hoped for, showing us many previously unseen features in well-known areas of the nearby Universe. Now we are ready to observe billions of galaxies, and study their evolution over cosmic time,” said René Laureijs, ESA Euclid Project Scientist, in a statement.

The spiral galaxy IC 342, located about 11 million light-years from Earth, lies behind the crowded plane of the Milky Way: Dust, gas, and stars obscure it from our view. Euclid used its near-infrared instrument to peer through the dust and study it.
The spiral galaxy IC 342, located about 11 million light-years from Earth, lies behind the crowded plane of the Milky Way: Dust, gas, and stars obscure it from our view. Euclid used its near-infrared instrument to peer through the dust and study it. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Euclid’s preliminary test images were released in August this year, but soon after the telescope developed an issue with its guidance system. The instrument which was designed to lock onto stars was intermittently failing, causing errors. Fortunately, that issue was fixed with a software update in October, and the telescope is now able to capture these beautiful images of various targets.

The galaxy NGC 6822 is located 1.6 million light-years from Earth. Euclid was able to capture this view of the entire galaxy and its surroundings in high resolution in about one hour, which isn’t possible with ground-based telescopes or targeted telescopes (such as NASA’s Webb) that have narrower fields of view.
The galaxy NGC 6822 is located 1.6 million light-years from Earth. Euclid was able to capture this view of the entire galaxy and its surroundings in high resolution in about one hour, which isn’t possible with ground-based telescopes or targeted telescopes (such as NASA’s Webb) that have narrower fields of view. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

“Euclid’s first images mark the beginning of a new era of studying dark matter and dark energy,” said Mike Seiffert, Euclid project scientist at NASA’s Jet Propulsion Laboratory. “This is the first space telescope dedicated to dark universe studies, and the sheer scale of the data we’re going to get out of this will be unlike anything we’ve had before. These are big mysteries, so it’s exciting for the international cosmology community to see this day finally arrive.”

This sparkly image shows Euclid’s view of a globular cluster – a collection of gravitationally bound stars that don’t quite form a galaxy – called NGC 6397. No other telescope can capture an entire globular cluster in a single observation and distinguish so many stars within it.
This sparkly image shows Euclid’s view of a globular cluster – a collection of gravitationally bound stars that don’t quite form a galaxy – called NGC 6397. No other telescope can capture an entire globular cluster in a single observation and distinguish so many stars within it. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Swatch lets you put a stunning Webb space image on a watch face
New Swatch designs featuring images captured by the James Webb Space Telescope.

Space fans have been marveling at the stunning images beamed to Earth by the James Webb Space Telescope ever since it went into operation last year.

The most powerful space telescope ever built is using its near-infrared camera (NIRCam) to peer deeper into space than ever before, with scientists hoping that its discoveries could help unlock some of the mysteries of the universe.

Read more
Dark matter hunting telescope Euclid has a problem with its guidance system
Graphic rendering of the Euclipd space telescope.

The European Space Agency's (ESA) Euclid space telescope, which launched in July this year to investigate the mysteries of dark matter and dark energy, has run into issues during its commissioning phase. Although the early calibration images looked good, since then the telescope has had problems with the instrument that helps it position itself by locking onto particular stars, called the Fine Guidance Sensor.

The Fine Guidance Sensor has been intermittently failing to lock onto stars, which is making it difficult to orient the telescope in the right direction. When working correctly, data from the Fine Guidance Sensor goes to the spacecraft's attitude and orbit control system which keeps it in the right orientation. However as this has not been working as intended, the commissioning phase for the telescope has been extended so teams can investigate the issue.

Read more
James Webb telescope captures stunning view of a famous supernova remnant
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

One of the satellite galaxies of the Milky Way, the Large Magellanic Cloud, is famous as the host of the nearest supernova to Earth in recent history. Supernova SN 1987A occurred when a massive star ran out of fuel and collapsed at the end of its life, setting off an enormous explosion that threw out a shock wave so powerful it reshaped the dust and gas around it for millions of miles in every direction.

That supernova left behind a remnant, a ring-shaped structure created as the shock wave traveled outward over time. This glowing ring has been frequently observed since the supernova was first seen in 1987. Now, the James Webb Space Telescope has provided one of the most detailed views yet of this stunning structure that was created from a destructive explosion.

Read more