Skip to main content

Dark matter hunting telescope Euclid has a problem with its guidance system

The European Space Agency’s (ESA) Euclid space telescope, which launched in July this year to investigate the mysteries of dark matter and dark energy, has run into issues during its commissioning phase. Although the early calibration images looked good, since then the telescope has had problems with the instrument that helps it position itself by locking onto particular stars, called the Fine Guidance Sensor.

The Fine Guidance Sensor has been intermittently failing to lock onto stars, which is making it difficult to orient the telescope in the right direction. When working correctly, data from the Fine Guidance Sensor goes to the spacecraft’s attitude and orbit control system which keeps it in the right orientation. However as this has not been working as intended, the commissioning phase for the telescope has been extended so teams can investigate the issue.

ESA's Euclid mission is designed to explore the composition and evolution of the dark Universe. The space telescope will create a great map of the large-scale structure of the Universe across space and time by observing billions of galaxies out to 10 billion light-years, across more than a third of the sky. Euclid will explore how the Universe has expanded and how structure has formed over cosmic history, revealing more about the role of gravity and the nature of dark energy and dark matter.
ESA’s Euclid mission is designed to explore the composition and evolution of the dark Universe. The space telescope will create a great map of the large-scale structure of the Universe across space and time by observing billions of galaxies out to 10 billion light-years, across more than a third of the sky. Euclid will explore how the Universe has expanded and how structure has formed over cosmic history, revealing more about the role of gravity and the nature of dark energy and dark matter. ESA/Euclid/Euclid Consortium/NASA. Background galaxies: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team, CC BY-SA 3.0 IGO

“The issue of Euclid’s fine guidance is something we’ve all been concerned about. Teams at ESA’s technical heart (ESTEC), mission control (ESOC), Astronomy Centre (ESAC) and industry have been working day and night, tirelessly for months, and I can’t thank them enough for their determination to resolve the issue,” said Euclid Operations Director Andreas Rudolph in a statement. “I’m relieved to say that initial tests are looking good. We’re finding many more stars in all our tests, and while it’s too early to celebrate and more observations are needed, the signs are very encouraging.”

The teams have created updated software to address the issue, and the software fix has worked on a test version of the spacecraft which is kept at mission control. The update has now been sent to the telescope too, and the teams will be testing the telescope to see if it helps fix the issue.

“Obviously, this is where we will have the real test of truth, as only the science images can provide us with absolute certainty that Euclid’s pointing is performing well,” said Giuseppe Racca, Euclid Project Manager. “However, all evidence so far makes us very optimistic. We will continue to keep our fingers tightly crossed, but the restart of the performance verification phase gets nearer every day.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the incredible first images taken by the dark matter-hunting Euclid telescope
Euclid’s Near-Infrared Spectrometer and Photometer (NISP) instrument is dedicated to measuring the amount of light that galaxies emit at each wavelength. It will image the sky in infrared light (900–2000 nm) to measuring the brightness and intensity of light. This image was taken during commissioning of Euclid to check that the focused instrument worked as expected. This is a raw image taken using NISP’s ‘Y’ filter. Because it is largely unprocessed, some unwanted artefacts remain – for example the cosmic rays that shoot straight across, seen especially in the VIS image. The Euclid Consortium will ultimately turn the longer-exposed survey observations into science-ready images that are artefact-free, more detailed, and razor sharp.

The recently-launched Euclid space telescope just took some of its first images, and the European Space Agency (ESA) has shared them to give a taste of what is to come from this dark matter investigation tool.

Even though they are only preliminary test images, they still give a stunning view of distant galaxies and show what Euclid will be able to produce once it begins its science operations in a few months' time. The aim of the mission is to learn about dark matter and dark energy by creating a 3D map of the dark matter in the universe.

Read more
Euclid dark matter telescope arrives at its destination orbit
The ESA' Euclid telescope has a mission to map the dark matter in the universe.

The European Space Agency (ESA)'s Euclid space telescope has arrived at its orbit around the sun. Launched from Cape Canaveral on July 1, the telescope is now in at orbit around the sun at the L2 Lagrange point, where it joins other space telescopes such as the James Webb Space Telescope and the Gaia space telescope.

Webb and Gaia welcome Euclid to L2

Read more
Researchers want to use gravitational waves to learn about dark matter
Artist's conception shows two merging black holes similar to those detected by LIGO.

When two sufficiently massive objects collide -- such as when two black holes merge -- the forces can actually bend space-time, creating ripples called gravitational waves. These gravitational waves can be detected even from millions of light-years away, making them a way to learn about distant, dramatic events in far-off parts of the universe. And now, a team of astronomers has come up with a method for using gravitational waves to study the mysterious phenomenon of dark matter.

The idea of the research was to create different computer models of what gravitational waves from black hole mergers would look like in universes with different types of dark matter. By comparing the models to what is seen in the real world, we can learn more about what type of dark matter is most likely.

Read more