Skip to main content

Swatch lets you put a stunning Webb space image on a watch face

New Swatch designs featuring images captured by the James Webb Space Telescope.
ESA/Swatch

Space fans have been marveling at the stunning images beamed to Earth by the James Webb Space Telescope ever since it went into operation last year.

The most powerful space telescope ever built is using its near-infrared camera (NIRCam) to peer deeper into space than ever before, with scientists hoping that its discoveries could help unlock some of the mysteries of the universe.

Recommended Videos

Science aside, many of the images are beautiful in their own right, showing colorful nebulae and dazzling galaxies far from Earth.

Please enable Javascript to view this content

Now, in a special partnership between the European Space Agency and watchmaker Swatch, it’s possible to create your own watch face using one of these amazing images.

Six new “Swatch X You” designs have been made available for a limited time, with each one featuring a space image captured by these groundbreaking telescopes.

You can design your watch face using the online configurator on the Swatch X You website.

The watch, which costs $135, will be delivered along with an ESA-branded strap, a special sleeve, and a postcard showing the telescope image used for the design.

The offer launched on Wednesday and will run through December 17.

ESA’s Professor Carole Mundell commented on the collaboration, describing it as a “wonderful opportunity to share our fascination for space and science through these beautiful, inspiring designs.”

Mundell added: “Astronomers were originally the keepers of date and time. Today, our telescopes look back thousands, millions, even billions of years. Whenever you check the time, these watches will also give you a breathtaking glimpse of time and space on a cosmic scale.”

In a related effort, the United States Postal Service (USPS) last year launched a specially designed stamp to celebrate the James Webb Space Telescope. The image on the stamp shows an artist’s digitally created depiction of the telescope, set against a striking starscape.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more