Skip to main content

See Webb’s most beautiful image yet of the Pillars of Creation

One of the most famous space images of all time is the Hubble Space Telescope’s image of the Pillars of Creation, originally taken in 1995 and revisited in 2014. This stunning structure of dust and gas is located in the Eagle Nebula and is remarkable both for its beauty and for the dynamic process of star formation going on within its clouds.

Earlier this year, the James Webb Space Telescope took its own images of this natural wonder, capturing images in both the near-infrared and mid-infrared wavelengths. Now, both of Webb’s images have been combined into one, showing a gorgeous new view of the famous structure.

The iconic Pillars of Creation from two cameras aboard the NASA/ESA/CSA James Webb Space Telescope.
By combining images of the iconic Pillars of Creation from two cameras aboard the NASA/ESA/CSA James Webb Space Telescope, the Universe has been framed in its infrared glory. Webb’s near-infrared image was fused with its mid-infrared image, setting this star-forming region ablaze with new details. NASA, ESA, CSA, STScI, J. DePasquale (STScI), A. Pagan (STScI), A. M. Koekemoer (STScI)

This image combines data from Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). The near-infrared range shows up features like the many stars in the background and the newly forming stars which are visible as orange dots around the pillars of dust, while the mid-infrared range shows the layers of dust which are displayed in colors ranging from orange to indigo depending on their density.

Recommended Videos

Combining images taken at different wavelengths like this allows an image to display features that would otherwise be invisible. In Webb’s mid-infrared image of the pillars, for example, very few stars are visible, while the near-infrared can’t penetrate the deep layers of dust to show such detail.

The pillars’ dust makes them such a busy region of star formation, as new stars are created when dust forms into knots which gradually attract more material until they collapse under their own gravity and become protostars. More and more material is drawn into these cores, getting hot and hotter due to friction, until eventually, the protostar reaches a sufficiently high core temperature that it begins fusing hydrogen into helium, radiating out heat and light and becoming a main sequence star.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more
Firefly’s Blue Ghost moon mission shares its most stunning image yet
Firefly’s Blue Ghost lander captures image of Earth reflecting off the solar panel with the Moon on the horizon above Earth. Firefly’s X-band antenna and NASA’s LEXI payload are also shown on the top deck of the lander.

As the Firefly Aerospace mission known as Blue Ghost makes it way to the moon, it is snapping some gorgeous images as it goes -- including striking images of Earth in its rearview mirror. Now, the company has released the most stunning image so far, showing the planet Earth and its reflection bouncing off the smooth surface of a solar panel on the spacecraft.

Firefly’s Blue Ghost lander captures image of Earth reflecting off the solar panel with the Moon on the horizon above Earth. Firefly’s X-band antenna and NASA’s LEXI payload are also shown on the top deck of the lander. Firefly Aerospace

Read more