Skip to main content

James Webb telescope captures the gorgeous Ring Nebula in stunning detail

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula — a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn’t a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).
A composite image of the Ring Nebula taken by the James Webb Space Telescope. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star that ejected all this material is visible at the very center. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4,000 years ago. The University of Manchester

This image was taken using Webb’s NIRCam instrument, recorded as part of observations by astronomers from the UK and France. By looking at the nebula in the infrared, scientists can see the hot gas that makes up its structure, as well as the star in the center of the nebula that is responsible for its creation.

“The James Webb Space Telescope has provided us with an extraordinary view of the Ring Nebula that we’ve never seen before,” said Mike Barlow, lead scientist of the JWST Ring Nebula Project, in a statement. “The high-resolution images not only showcase the intricate details of the nebula’s expanding shell, but also reveal the inner region around the central white dwarf in exquisite clarity. We are witnessing the final chapters of a star’s life, a preview of the sun’s distant future so to speak, and JWST’s observations have opened a new window into understanding these awe-inspiring cosmic events. We can use the Ring Nebula as our laboratory to study how planetary nebulae form and evolve.”

The researchers are studying objects like the Ring Nebula to learn more about how stars evolve and what happens to them toward the end of their lives.

“We are amazed by the details in the images, better than we have ever seen before,” said another of the researchers, Albert Zijlstra of the University of Manchester. “We always knew planetary nebulae were pretty. What we see now is spectacular.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Scientists explain cosmic ‘question mark’ spotted by Webb space telescope
The shape of a question mark captured by the James Webb Space Telescope.

Considering the myriad of unknowns that still exist for scientists exploring the vastness of the universe, the recent discovery in deep space of what seems to be a giant question mark feels highly appropriate.

Captured by the powerful James Webb Space Telescope, the bright, distinctive object clearly bears the shape of a question mark, leaving some stargazers wondering if the cosmos is teasing us, or perhaps motivating us to keep on searching the depths of space for the secrets that it may reveal.

Read more
See how James Webb instruments work together to create stunning views of space
The irregular galaxy NGC 6822.

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 -- and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements -- i.e., everything which isn't hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

Read more
James Webb image shows the majesty of the most massive known galaxy cluster
Webb’s infrared image of the galaxy cluster El Gordo (“the Fat One”) reveals hundreds of galaxies, some never before seen at this level of detail. El Gordo acts as a gravitational lens, distorting and magnifying the light from distant background galaxies. Two of the most prominent features in the image include the Thin One, located just below and left of the image center, and the Fishhook, a red swoosh at upper right. Both are lensed background galaxies.

A recent image from the James Webb Space Telescope shows the most massive galaxy cluster we know of -- one so large that it is nicknamed El Gordo, or the fat one. Thought to have a mass of over 2 quadrillion times the mass of the sun, the cluster is located 7 billion light-years away and hosts hundreds of galaxies that are gravitationally bound together.

The image was taken using Webb's NIRCam instrument, which was able to capture the most detailed look yet at this enormous cluster and the many galaxies within it.

Read more