Skip to main content

James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities — like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b.
This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day. NASA, ESA, CSA, J. Olmsted (STScI)

Astronomers were able to get an excellent view of the planet because instead of orbiting one star like the planets in our solar system, this planet orbits a pair of stars and it takes 10,000 years to complete a full orbit. That means it is far away from the light of its stars, so it is easier for astronomers to see the planet’s relatively dim reflected light.

Recommended Videos

“VHS 1256 b is about four times farther from its stars than Pluto is from our Sun, which makes it a great target for Webb,” said science team lead Brittany Miles of the University of Arizona in a statement. “That means the planet’s light is not mixed with light from its stars.”

Sand clouds are unusual, but not unheard of when it comes to exoplanets. In this case, the gritty clouds are located up high in the planet’s atmosphere, where temperatures reach an incredible 1,500 degrees Fahrenheit. The planet has low gravity as well, allowing the clouds of both larger and smaller grains to float high in the atmosphere.

“The finer silicate grains in its atmosphere may be more like tiny particles in smoke,” said co-author Beth Biller of the University of Edinburgh. “The larger grains might be more like very hot, very small sand particles.”

The researchers say that although they are excited by their findings, they want to do more research to understand the planet’s atmosphere. “We’ve identified silicates, but a better understanding of which grain sizes and shapes match specific types of clouds is going to take a lot of additional work,” Miles said. “This is not the final word on this planet — it is the beginning of a large-scale modeling effort to fit Webb’s complex data.”

The research is published in The Astrophysical Journal Letters.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more
This distant exoplanet has an atmosphere ‘like something out of science fiction’
Tylos (or WASP-121b) is a gaseous, giant exoplanet located some 900 light-years away in the constellation Puppis. Using the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), scientists have been able to prove into its atmosphere, revealing its 3D structure. This is the first time that this has been possible on a planet outside of the Solar System. The atmosphere of Tylos is divided into three layers, with iron winds at the bottom, followed by a very fast jet stream of sodium, and finally an upper layer of hydrogen winds. This kind of climate has never been seen before on any planet.

For decades, astronomers have been wondering about planets beyond our solar system -- called exoplanets -- and whether we could learn about these far-off worlds. With the introduction of tools like the James Webb Space Telescope, we're now able to not only detect exoplanets, but also to learn about them in detail. Recently, astronomers created the first 3D view of an exoplanet atmosphere, letting them peer into the climate of another world.

The researchers used a ground-based telescope, the European Southern Observatory’s Very Large Telescope (ESO’s VLT), which consists of four telescopes that work together to take detailed readings of distant objects. They found that exoplanet WASP-121b, which has surface temperatures of over 3,000 Kelvins, or 5,000 degrees Fahrenheit, is so hot that metals like iron and titanium can be whipped up into the atmosphere, carried by powerful winds.

Read more