Skip to main content

Hubble captures a formation of galaxies neatly lined up

Sometimes, Hubble or other telescopes will capture two or more galaxies that are in the process of merging — called interacting galaxies. These huge collisions can warp one or both of the galaxies, twisting them into strange shapes. The results of such collisions can be catastrophic, with one of the galaxies being destroyed. Or they can be creative, with one larger galaxy being formed from the two merging galaxies.

However, sometimes galaxies that appear very close in images are not actually interacting. Sometimes, they merely appear to be close when seen from Earth, but they can actually be thousands of light-years apart. That’s the case with a previous Hubble image showing two overlapping galaxies.

The latest Hubble image shows an interesting mix, which is a twist on this premise: it features both an interacting galaxy system and a string of galaxies that happen to line up in a neat procession.

An interacting galaxy system known as Arp-Madore 2105-332, that lies about 200 million light-years from Earth in the constellation Microscopium.
This image features an interacting galaxy system known as Arp-Madore 2105-332, that lies about 200 million light-years from Earth in the constellation Microscopium. Like other recent Hubble Pictures of the Week, this system belongs to the Arp-Madore catalog of peculiar galaxies. The wonderful quality of this image also reveals several further galaxies, not associated with this system but fortuitously positioned in such a way that they appear to be forming a line that approaches the leftmost (in this image) component of Arp-Madore 2105-332, which is known individually as 2MASX J21080752-3314337. The rightmost galaxy, meanwhile, is known as 2MASX J21080362-3313196. These hefty names do not lend themselves to easy memorization, but they do actually contain valuable information: They are coordinates in the right ascension and declination system used widely by astronomers to locate astronomical objects. ESA/Hubble & NASA, J. Dalcanton; CC BY 4.0 Acknowledgement: L. Shatz

The interacting galaxies are called Arp-Madore 2105-332 and are located 200 million light-years away. Even though the two look fairly far apart in this image, with one in the middle and one to the right of the frame, they are close enough in galactic terms to be affecting each other gravitationally. Beneath the leftmost part of the galaxy pair is a string of other galaxies lined up purely by coincidence.

The interacting galaxies are named Arp-Madore because of the catalog they are named in, which collects together unusual galaxies known as peculiar galaxies. Among these peculiar galaxies are those that have been pulled into unusual shapes due to mergers or are in the process of interacting. Peculiar galaxies can have one spiral arm brighter than the others, or two supermassive black holes at their center, or be affected by a nearby satellite galaxy, or even be a stunning ring shape.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more
Hubble captures an exceptionally luminous supernova site
This NASA Hubble Space Telescope image is of the small galaxy known as UGC 5189A.

This week's image from the Hubble Space Telescope shows the aftermath of an epic explosion in space caused by the death of a massive star.

Some of the most dramatic events in the cosmos are supernovas, when a massive star runs out of fuel to fuse -- first running out of hydrogen, then helium, then burning through heavier elements -- and eventually can no longer sustain the outward pressure from heat caused by this fusion. When that happens, the star collapses suddenly into a dense core, and its outer layers are thrown off in a tremendous explosion called a Type II supernova.

Read more