Skip to main content

Hubble captures a galaxy distorted by gravitational lensing

A recently released image taken by the Hubble Space Telescope shows a distant galaxy that has been warped and distorted by a phenomenon called gravitational lensing. This phenomenon allows scientists to infer information about very distant objects and is used in the discovery of exoplanets.

The galaxy pictured is called LRG-3-817 and is also known as SDSS J090122.37+181432.3. If you look just to the left of the center of the image, you can see what looks like a smudge in an arc shape. This is the gravitational lensing effect.

This NASA/ESA Hubble Space Telescope image features the galaxy LRG-3-817, also known as SDSS J090122.37+181432.3. The galaxy, its image distorted by the effects of gravitational lensing, appears as a long arc to the left of the central galaxy cluster.
This NASA/ESA Hubble Space Telescope image features the galaxy LRG-3-817, also known as SDSS J090122.37+181432.3. The galaxy, its image distorted by the effects of gravitational lensing, appears as a long arc to the left of the central galaxy cluster. ESA/Hubble & NASA, S. Allam et al.

Gravitational lensing occurs when a telescope like Hubble is pointed at a distant target like this galaxy, and a large object such as a cluster of galaxies passes between the telescope and its target. The gravity of this intermediate object bends the light coming from the distant object and acts like a magnifying glass, temporarily making the light from the distant object brighter.

Recommended Videos

The effect might look like a mistake or a distortion in the data, but in fact, it’s an incredibly useful phenomenon. As the Hubble scientists write, “Strong gravitational lenses provide an opportunity for studying properties of distant galaxies, since Hubble can resolve details within the multiple arcs that are one of the main results of gravitational lensing. An important consequence of lensing distortion is magnification, allowing us to observe objects that would otherwise be too far away and too faint to be seen. Hubble makes use of this magnification effect to study objects beyond the sensitivity of its 2.4-meter-diameter (almost 8-foot) primary mirror, showing us the most distant galaxies humanity has ever encountered.”

Please enable Javascript to view this content

This means that researchers can more easily study distant galaxies, as they are normally very faint but when they are lensed they become brighter. This same technique can be used on a smaller scale in a process called gravitational microlensing, which is used to identify exoplanets. When an exoplanet is in orbit around a star that passes in front of another star, it can affect the brightness of the distant star. By observing the fluctuations in brightness researchers can spot the exoplanet and infer information about it like its mass.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble images a pair of tiny dwarf galaxies
hubble dwarf galaxy pair ic3430 potw2431a 1

A new image from the Hubble Space Telescope shows a small dwarf galaxy called IC 3430 that's located 45 million light-years away. This galaxy is classified as both a dwarf galaxy, because of its small size, and an elliptical galaxy, because of its form.

Elliptical galaxies are smooth and featureless, appearing blob-like and diffuse, unlike spiral galaxies, like our Milky Way, which have a distinct structure of a central hub and stretching spiral arms.

Read more
Hubble finds mysterious and elusive black hole
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole.

An international team of astronomers has used more than 500 images from the NASA/European Space Agency (ESA) Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence of the presence of an intermediate-mass black hole. ESA/Hubble & NASA, M. Häberle (MPIA)

There's something strange about black holes. Astronomers often find small black holes, which are between five times and 100 times the mass of the sun. And they often find huge supermassive black holes, which are hundreds of thousands of times the mass of the sun or even larger. But they almost never find black holes in between those two sizes.

Read more
Hubble takes first image since switching to new pointing mode
This NASA Hubble Space Telescope features the galaxy NGC 1546.

This NASA Hubble Space Telescope captured an image of the galaxy NGC 1546. NASA, ESA, STScI, David Thilker (JHU)

The Hubble Space Telescope has been through some troubles of late, and the way that it operates had to be changed recently to compensate for some degraded hardware. The telescope's three gyros, which help it to switch between different targets in the sky, have been experiencing issues, with one in particular frequently failing over recent months. NASA made the decision recently to change the way that Hubble points, and it now uses just one gyro at a time instead of all three in order to preserve the two remaining gyros for as long as possible.

Read more