Skip to main content

This star shredded its companion to create a stunning double-lobed nebula

Nebulae are some of the most beautiful structures to be found in space: vast clouds of dust and gas that are illuminated by light from nearby stars. These regions are often busy sites of star formation, as new stars are born from clumps of dust that collect more material due to gravity. Within the category of nebulae, there are different types such as emission nebulae, where the gases are ionized by radiation and glow brightly, or supernova remnants, which are the structures left behind after massive stars come to the end of their lives and explode.

A recent image captured by NOIRLab’s Gemini South telescope shows a rare type of nebula called a bipolar reflection nebula. Known as the Toby Jug Nebula for its similar shape to a traditional English jug, nebula IC 2220 is 1,200 light-years away in the constellation of Carina, or the Keel.

A billowing pair of nearly symmetrical loops of dust and gas mark the death throes of an ancient red-giant star, as captured by Gemini South, one half of the International Gemini Observatory, operated by NSF’s NOIRLab. The resulting structure, said to resemble an old style of English jug, is a rarely seen bipolar reflection nebula. Evidence suggests that this object formed by the interactions between the dying red giant and a now-shredded companion star. The image was obtained by NOIRLab’s Communication, Education & Engagement team as part of the NOIRLab Legacy Imaging Program.
A billowing pair of nearly symmetrical loops of dust and gas mark the death throes of an ancient red-giant star, as captured by Gemini South, one-half of the International Gemini Observatory, operated by NSF’s NOIRLab. The resulting structure, said to resemble an old style of English jug, is a rarely seen bipolar reflection nebula. International Gemini Observatory/NOIRLab/NSF/AURA Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), J. Miller (Gemini Observatory/NSF’s NOIRLab), M. Rodriguez (Gemini Observatory/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab)

The double lobe of the nebula refers to the two looped structures originating from the nebula’s heart, a red giant star coming to the end of its life. Lower-mass stars like our sun reach this stage when they begin to run out of fuel and puff up to a large size, before throwing off layers of gas to create a planetary nebula.

Recommended Videos

“In about five billion years from now, when our sun has burned through its supply of hydrogen, it too will become a red giant and eventually evolve into a planetary nebula,” NOIRLab writes. “In the very distant future, all that will be left of our solar system will be a nebula as vibrant as the Toby Jug Nebula with the slowly cooling sun at its heart.”

The red giant, called HR3126, is thought to be partially responsible for the unusual double-lobed shape of the nebula. Astronomers theorize that the red giant once had a companion star, which has since been pulled apart into a dense disk of matter which rotates around the red giant. This shredding of the companion star could have spurred the formation of the two-lobed structure.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Watch the Starliner spacecraft star in its own aurora video
Boeing's Starliner capsule docked at the ISS.

Boeing’s CST-100 Starliner launched successfully atop a United Launch Alliance Atlas V rocket on June 5, safely delivering NASA astronauts Suni Williams and Butch Wilmore to the International Space Station (ISS) the following day.

The Starliner, on its first crewed flight to orbit, was originally scheduled for a stay lasting just over a week. But in recent days, NASA announced the spacecraft would stay at the ISS until June 22 to finalize departure planning and operations, and also to carry out engine tests to evaluate the performance of thrusters, some of which played up during the Starliner’s final approach to the ISS on June 6.

Read more
A cosmic explosion will create a bright new star in the sky
A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion.

A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. NASA/Goddard Space Flight Center

The night sky will soon be getting a brand new star when an expected cosmic explosion that will be visible from Earth even with the naked eye occurs this summer. It is the result of a phenomenon called a nova, where a binary star system called T Corona Borealis (T CrB) will explode in a flash of light that will take it from its dim form, currently visible only with a telescope, to a bright dot visible overhead.

Read more
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more