Skip to main content

James Webb observes merging stars creating heavy elements

In its earliest stages, the universe was composed mostly of hydrogen and helium. All of the other, heavier elements that make up the universe around us today were created over time, and it is thought that they were created primarily within stars. Stars create heavy elements within them in the process of fusion, and when these stars reach the ends of their lives they may explode in supernovas, spreading these elements in the environment around them.

That’s how heavier elements like those up to iron are created. But for the heaviest elements, the process is thought to be different. These are created not within stellar cores, but in extreme environments such as the merging of stars, when massive forces create exceedingly dense environments that forge new elements.

Now, the James Webb Space Telescope has detected some of these heavy elements being created in a star merger for the first time. Researchers used the telescope to observe the effects of a kilonova, a huge outpouring of energy that occurs when two neutron stars merge. The event created a particularly bright gamma-ray burst which allowed the researchers to zero in and identify the location of the merger.

A team of scientists has used the NASA/ESA/CSA James Webb Space Telescope to observe an exceptionally bright gamma-ray burst, GRB 230307A, and its associated kilonova. Kilonovas—an explosion produced by a neutron star merging with either a black hole or with another neutron star—are extremely rare, making it difficult to observe these events. The highly sensitive infrared capabilities of Webb helped scientists identify the home address of the two neutron stars that created the kilonova. This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and travelled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.
A team of scientists has used the NASA/ESA/CSA James Webb Space Telescope to observe an exceptionally bright gamma-ray burst, GRB 230307A, and its associated kilonova. Kilonovas—an explosion produced by a neutron star merging with either a black hole or with another neutron star—are extremely rare, making it difficult to observe these events. The highly sensitive infrared capabilities of Webb helped scientists identify the home address of the two neutron stars that created the kilonova. This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and traveled a distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later. NASA, ESA, CSA, STScI, A. Levan (IMAPP, Warw), A. Pagan (STScI)

Webb observed the element tellurium being ejected by the kilonova, which was likely created in the merger. Although scientists have long theorized that this is how heavy elements could be created, this is the first time such direct evidence has been observed as kilonovas are rare and brief events. The particular brightness of the gamma-ray burst GRB 230307A was key to helping to locate this event.

“Webb provides a phenomenal boost and may find even heavier elements,” said Ben Gompertz, a co-author of the study at the University of Birmingham in the United Kingdom. “As we get more frequent observations, the models will improve and the spectrum may evolve more in time. Webb has certainly opened the door to do a lot more, and its abilities will be completely transformative for our understanding of the Universe.”

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a unique view of Uranus’s ring system
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more