Skip to main content

Hubble Space Telescope images exceptionally fluffy galaxy

In this week’s image from the Hubble Space Telescope, you can see an unusual type of galaxy called an ultra-diffuse galaxy. The galaxy GAMA 526784 is shown as a smear of light across the center of the image and is around four billion light-years away located in the constellation of Hydra.

“Ultra-diffuse galaxies such as GAMA 526784 have a number of peculiarities,” Hubble scientists write. “For example, they can have either very low or high amounts of dark matter, the invisible substance thought to make up the majority of matter in the universe. Observations of ultra-diffuse galaxies found some with an almost complete lack of dark matter, whereas others consist of almost nothing but dark matter. Another oddity of this class of galaxies is their unusual abundance of bright globular clusters, something not observed in other types of galaxies.”

Related Videos
The ultra-diffuse galaxy GAMA 526784 appears as a tenuous patch of light in this image from the NASA/ESA Hubble Space Telescope. This wispy object resides in the constellation Hydra, roughly four billion light-years from Earth. Ultra-diffuse galaxies such as GAMA 526784 have a number of peculiarities. For example, they can have either very low or high amounts of dark matter, the invisible substance thought to make up the majority of matter in the universe. Observations of ultra-diffuse galaxies found some with an almost complete lack of dark matter, whereas others consist of almost nothing but dark matter. Another oddity of this class of galaxies is their unusual abundance of bright globular clusters, something not observed in other types of galaxies.
The ultra-diffuse galaxy GAMA 526784 appears as a tenuous patch of light in this image from the NASA/ESA Hubble Space Telescope. This wispy object resides in the constellation Hydra, roughly four billion light-years from Earth. ESA/Hubble & NASA, R. van der Burg; Acknowledgment: L. Shatz

This image was collected as part of a Hubble project to learn more about ultra-diffuse galaxies by imaging them at ultraviolet wavelengths. These galaxies can be as big as 60,000 light-years across, which is around the same size as our Milky Way galaxy, but contain just 1% of the number of stars as the Milky Way. This has led to them being called the “fluffiest” galaxies.

The low star densities of these galaxies mean it is hard to say how they have survived, as it would be expected that they would have been pulled apart. That’s where the dark matter comes in — researchers think that those galaxies with high levels of dark matter might be protected by these dark matter cushions.

But then, how to explain the very diffuse galaxies which contain almost no dark matter? Researchers still don’t have a good answer to this question. The only possibility so far is that two of these ultra-diffuse galaxies which are lacking in dark matter, NGC 1052-DF2 and NGC 1052-DF4, could have formed in the same group at the same time and that there might be something odd about the particular environment they formed in.

Editors' Recommendations

Water was present in our solar system before the sun formed
This artist’s impression shows the planet-forming disc around the star V883 Orionis. In the outermost part of the disc water is frozen out as ice and therefore can’t be easily detected. An outburst of energy from the star heats the inner disc to a temperature where water is gaseous, enabling astronomers to detect it. The inset image shows the two kinds of water molecules studied in this disc: normal water, with one oxygen atom and two hydrogen atoms, and a heavier version where one hydrogen atom is replaced with deuterium, a heavy isotope of hydrogen.

You might assume that there has always been water on Earth -- that water was there from the very beginning when our planet formed. But scientists increasingly think that water on Earth may have originated elsewhere, and been carried here by comets. However, the water in the comets had to come from somewhere, and astronomers recently made a discovery which could shed light on how that water was found in the solar system.

The researchers used the Atacama Large Millimeter/submillimeter Array (ALMA), a radio telescope array in Chile, to study a planet-forming disc around the star V883 Orionis, looking for water there to see how it would be transported as the disk evolves into planets.

Read more
Hubble captures a messy irregular galaxy which hosted a supernova
The irregular spiral galaxy NGC 5486 hangs against a background of dim, distant galaxies in this image from the NASA/ESA Hubble Space Telescope. The tenuous disk of the galaxy is threaded through with pink wisps of star formation, which stand out from the diffuse glow of the galaxy’s bright core.

This week's image from the Hubble Space Telescope shows a dramatic spiral galaxy called NGC 5486, which is shot through with wisps of pink showing regions where new stars are being born.

Located 110 million light-years away in the famous constellation of Ursa Major, this galaxy is a type called an irregular spiral galaxy because its arms are wandering and indistinct. If you compare the image of this galaxy to one of a quintessential spiral galaxy like NGC 2336, you'll see that a non-irregular spiral galaxy has clearly defined arms that reach out from its center and are symmetrical.

Read more
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more