Skip to main content

Hubble Space Telescope images exceptionally fluffy galaxy

In this week’s image from the Hubble Space Telescope, you can see an unusual type of galaxy called an ultra-diffuse galaxy. The galaxy GAMA 526784 is shown as a smear of light across the center of the image and is around four billion light-years away located in the constellation of Hydra.

“Ultra-diffuse galaxies such as GAMA 526784 have a number of peculiarities,” Hubble scientists write. “For example, they can have either very low or high amounts of dark matter, the invisible substance thought to make up the majority of matter in the universe. Observations of ultra-diffuse galaxies found some with an almost complete lack of dark matter, whereas others consist of almost nothing but dark matter. Another oddity of this class of galaxies is their unusual abundance of bright globular clusters, something not observed in other types of galaxies.”

The ultra-diffuse galaxy GAMA 526784 appears as a tenuous patch of light in this image from the NASA/ESA Hubble Space Telescope. This wispy object resides in the constellation Hydra, roughly four billion light-years from Earth. Ultra-diffuse galaxies such as GAMA 526784 have a number of peculiarities. For example, they can have either very low or high amounts of dark matter, the invisible substance thought to make up the majority of matter in the universe. Observations of ultra-diffuse galaxies found some with an almost complete lack of dark matter, whereas others consist of almost nothing but dark matter. Another oddity of this class of galaxies is their unusual abundance of bright globular clusters, something not observed in other types of galaxies.
The ultra-diffuse galaxy GAMA 526784 appears as a tenuous patch of light in this image from the NASA/ESA Hubble Space Telescope. This wispy object resides in the constellation Hydra, roughly four billion light-years from Earth. ESA/Hubble & NASA, R. van der Burg; Acknowledgment: L. Shatz

This image was collected as part of a Hubble project to learn more about ultra-diffuse galaxies by imaging them at ultraviolet wavelengths. These galaxies can be as big as 60,000 light-years across, which is around the same size as our Milky Way galaxy, but contain just 1% of the number of stars as the Milky Way. This has led to them being called the “fluffiest” galaxies.

The low star densities of these galaxies mean it is hard to say how they have survived, as it would be expected that they would have been pulled apart. That’s where the dark matter comes in — researchers think that those galaxies with high levels of dark matter might be protected by these dark matter cushions.

But then, how to explain the very diffuse galaxies which contain almost no dark matter? Researchers still don’t have a good answer to this question. The only possibility so far is that two of these ultra-diffuse galaxies which are lacking in dark matter, NGC 1052-DF2 and NGC 1052-DF4, could have formed in the same group at the same time and that there might be something odd about the particular environment they formed in.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Get out the scrapers: Euclid space telescope is getting deiced
Artist's impression of the Euclid mission in space.

If you thought it was annoying to deice your car in the winter, then spare a thought for the engineers whose job it is to deice telescopes in space. The European Space Agency's (ESA) Euclid space telescope is currently undergoing a deicing procedure to remove a few layers of water ice that are less than a nanometer thick but enough to impede the telescope's highly accurate measurements.

Artist's impression of the Euclid mission in space. ESA. Acknowledgement: Work performed by ATG under contract for ESA

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more