Skip to main content

James Webb Space Telescope fully aligned and capturing crisp images

Since the launch of the James Webb Space Telescope in December last year, engineers have been working to deploy the telescope’s hardware, then align both its mirrors and its instruments. Now, that months-long process is complete, and the telescope is confirmed to be fully aligned. NASA and the European Space Agency have shared an image showing the sharpness check of all of Webb’s instruments, showing that they are all crisp and properly focused.

“Engineering images of sharply focused stars in the field of view of each instrument demonstrate that the telescope is fully aligned and in focus,” the European Space Agency writes. “For this test, Webb pointed at part of the Large Magellanic Cloud, a small satellite galaxy of the Milky Way, providing a dense field of hundreds of thousands of stars across all the observatory’s sensors. The sizes and positions of the images shown here depict the relative arrangement of each of Webb’s instruments in the telescope’s focal plane, each pointing at a slightly offset part of the sky relative to one another.”

Related Videos
Engineering images of sharply focused stars in the field of view of each instrument demonstrate that the telescope is fully aligned and in focus.
Engineering images of sharply focused stars in the field of view of each instrument demonstrate that the telescope is fully aligned and in focus. NASA/STScI

The four instruments in question are the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec), and the Near-Infrared Imager and Slitless Spectrograph/Fine Guidance Sensor (NIRISS/FGS). Those are three imaging instruments and one spectrograph (an instrument for detecting the composition of objects by separating the light they give off), but the spectrograph can be used to take images as well — like the images shown above which are used for calibration and target selection. If you look at the NIRSpec image you’ll see black bands across it, which are caused by its microshutter array which allows it to open and close tiny windows so that the instrument can observe up to 100 objects at the same time.

All four of the instruments are pointed at the same target so that engineers could check they were all as sharp and accurate as they need to be. And the results are even better than the engineers hoped, resulting in a high degree of image quality which means the instruments are diffraction-limited — meaning that they are getting the maximum amount of detail possible for the size of the telescope.

With the alignments complete, now the team can begin commissioning each instrument. That involves configuring and checking parts of the instruments such as the masks and filters to make sure they are ready for science operations. There are also some final telescope calibration processes required, like checking that the telescope remains at a steady temperature when moving from one target to another. Once all of this is done, the telescope is scheduled to begin science operations this summer.

Editors' Recommendations

James Webb spots ‘universe-breaking’ massive early galaxies
Images of six candidate massive galaxies, seen 500-700 million years after the Big Bang. One of the sources (bottom left) could contain as many stars as our present-day Milky Way, according to researchers, but it is 30 times more compact.

The James Webb Space Telescope continues to throw up surprises, and recently it has been used to spot some very old galaxies which have astonished astronomers. The galaxy candidates are far more massive than anyone expected would be possible, challenging assumptions about the early universe.

An international team of astronomers spotted six potential galaxies in a region of space close to the Big Dipper constellation from just 500 to 700 million years after the Big Bang, when the universe was still in its infancy. “These objects are way more massive​ than anyone expected,” said one of the researchers, Joel Leja of Penn State. “We expected only to find tiny, young, baby galaxies at this point in time, but we’ve discovered galaxies as mature as our own in what was previously understood to be the dawn of the universe.”

Read more
Webb uses a galactic megacluster as an enormous magnifying lens
Astronomers estimate 50,000 sources of near-infrared light are represented in this image from NASA’s James Webb Space Telescope. Their light has travelled through varying distances to reach the telescope’s detectors, representing the vastness of space in a single image. A foreground star in our own galaxy, to the right of the image center, displays Webb’s distinctive diffraction spikes. Bright white sources surrounded by a hazy glow are the galaxies of Pandora’s Cluster, a conglomeration of already-massive clusters of galaxies coming together to form a megacluster.

Modern space telescopes are tremendously powerful instruments, able to look deep into space without being limited by the blurring effects of Earth's atmosphere. But even this is not enough to allow them to see the most distant galaxies, which are so far away that looking at them is like looking back in time to the early stages of the universe.

To look even further out, astronomers take advantage of a phenomenon called gravitational lensing. This happens when an object like a galaxy or a galaxy cluster has so much mass that it bends space-time, acting like a magnifying glass and brightening the extremely distant objects behind it.

Read more
James Webb captures swirls of dust and gas in nearby galaxies
Scientists are getting their first look with the NASA/ESA/CSA James Webb Space Telescope’s powerful resolution at how the formation of young stars influences the evolution of nearby galaxies. The spiral arms of NGC 7496, one of a total of 19 galaxies targeted for study by the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration, are filled with cavernous bubbles and shells overlapping one another in this image from Webb’s Mid-Infrared Instrument (MIRI). These filaments and hollow cavities are evidence of young stars releasing energy and, in some cases, blowing out the gas and dust of the interstellar medium they plough into.

The James Webb Space Telescope is helping astronomers to peer into nearby galaxies and see the elaborate structures of dust and gas which are created by and necessary for star formation.

The Physics at High Angular resolution in Nearby Galaxies, or PHANGS project, involves using data from different telescopes to look at galaxies that are close to us. By using telescopes such as the Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array, researchers can collect data in different wavelengths such as the visible light and radio wavelengths.

Read more